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(57) ABSTRACT

Amino acid sequences of proteins can be produced using an
autoencoder. For example, amino acid sequences of variant
proteins can be produced by an autoencoder that i1s fed an
amino acid sequence of a base protein as input. A decoding
component of the autoencoder can include at least one or
more components of a generative adversarial network.
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AUTOENCODER WITH GENERATIVE
ADVERSARIAL NETWORK TO GENERATE
PROTEIN SEQUENCES

BACKGROUND

[0001] Proteins are biological molecules that are com-
prised of one or more chains of amino acids. Proteins can
have various functions within an organism. For example,
some proteins can be mvolved in causing a reaction to take
place within an organism. In other examples, proteins can
transport molecules throughout the organism. In still other
examples, proteins can be ivolved in the replication of
genes. Additionally, some proteins can have therapeutic
properties and be used to treat various biological conditions.
The structure and function of proteins are based on the
arrangement of amino acids that comprise the proteins. The
arrangement of amino acids for proteins can be represented
by a sequence of letters with each letter corresponding to an
amino acid at a respective position. The arrangement of
amino acids for proteins can also be represented by three
dimensional structures that not only indicate the amino acids
at various locations of the protein, but also indicate three

dimensional features of the proteins, such as an a.-helix or a
3-sheet.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] The present disclosure 1s illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings, in which like references indicate similar
clements.

[0003] FIG. 1 1s a diagram 1llustrating an example frame-
work to generate an autoencoder that includes a decoding
component that implements one or more components of a
generative adversarial network, in accordance with some
implementations.

[0004] FIG. 2 15 a diagram 1llustrating an example frame-
work to train a generative adversarial network for use as a
decoding component of an autoencoder, 1n accordance with
some 1mplementations.

[0005] FIG. 3 15 a diagram 1illustrating an example frame-
work to perform transier learning with respect to a first
generative adversarial network and produce a second gen-
erative adversarial network that can be used as a decoding
component of an autoencoder, in accordance with some
implementations.

[0006] FIG. 4 1s a diagram 1llustrating an example frame-
work to modily code data produced by an encoding com-
ponent of an autoencoder to generate amino acid sequences
of variants of a base protein, 1n accordance with some
implementations.

[0007] FIG. 5 1s a flow diagram 1llustrating an example
process to modily code data produced by an encoding
component of an autoencoder to produce amino acid
sequences of variants of a base protein using one or more
components of a generative adversarial network as a decod-
ing component of the autoencoder, in accordance with some
implementations.

[0008] FIG. 6 1s a flow diagram 1llustrating an example
process to generate an autoencoder that produces amino acid
sequences of variants using one or more components of a
generative adversarial network as a decoding component of
the autoencoder, 1 accordance with some implementations,
in accordance with some implementations.

Oct. 19, 2023

[0009] FIG. 7 illustrates a diagrammatic representation of
a machine in the form of a computer system within which a
set of 1nstructions may be executed for causing the machine
to perform any one or more of the methodologies discussed
herein, according to an example embodiment.

DETAILED DESCRIPTION

[0010] Proteins can have many beneficial uses within
organisms. In particular situations, proteins can be used to
treat diseases and other biological conditions that can det-
rimentally impact the health of humans and other mammals.
In various scenarios, proteins can participate in reactions
that are beneficial to subjects and that can counteract one or
more biological conditions being experienced by the sub-
jects. In some examples, proteins can also bind to target
molecules within an organism that may be detrimental to the
health of a subject. For these reasons, many individuals and
organizations have sought to develop proteins that may have
therapeutic benefits.

[0011] The development of proteins can be a time con-
suming and resource intensive process. Often, candidate
proteins for development can be identified as potentially
having various biophysical properties, structural features
(e.g., negatively charged patches, hydrophobic patches),
three-dimensional (3D) structures, and/or behavior within an
organism. In order to determine whether the candidate
proteins actually have the characteristics of interest, the
proteins can be synthesized and then tested to determine
whether the actual characteristics of the synthesized proteins
correspond to the desired characteristics. Due to the amount
of resources needed to synthesize and test proteins for
specified biophysical properties, structural features, 3D
structures, and/or behaviors, the number of candidate pro-
teins synthesized for therapeutic purposes 1s limited. In
some situations, the number of proteimns synthesized for
therapeutic purposes can be limited by the loss of resources
that takes place when candidate proteins are synthesized and
do not have the desired characteristics.

[0012] The techniques, methods, and systems described
herein can include using an autoencoder to produce amino
acid sequences of variants of a base protein. The autoen-
coder can include an encoding component and a decoding
component. The encoding component can include a first
number of computational layers, such as a first number of
convolutional layers, and the decoding component can
include a second number of computational layers, such as a
second number of convolutional layers. The encoding com-
ponent can produce code data that 1s a representation of
input data provided to the encoding component. The code
data can be provided to the decoding component and the
decoding component can produce output that corresponds to
the code data.

[0013] The decoding component can include one or more
components of a generative adversarial network. For
example, the decoding component can include at least a
generating component of a generative adversarial network.
In various implementations, the generative adversarial net-
work can be trained prior to the training of the autoencoder.
The generative adversarial network can be trained using a
set of training data that corresponds to amino acid sequences
of proteins. At least a trained generating component of the
generative adversarial network can be implemented as a
decoding component for the autoencoder. Additionally, the
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trained generating component of the generative adversarial
network can produce a traiming dataset that can be used to
train the autoencoder.

[0014] During the training of the autoencoder, the com-
putational layers of the encoding component can be modi-
fied while the computational layers of the decoding com-
ponent are not modified. The training of the autoencoder can
include comparing output data produced by the decoding
component with mput data provided to the encoding com-
ponent. In one or more illustrative examples, output data
corresponding to amino acid sequences produced by the
decoding component can be analyzed with respect to input
data corresponding to amino acid sequences included 1n the
training dataset. Based on differences between the output of
the decoding component and the mnput provided to the
encoding component, modifications can be made to the
encoding component. For example, at least one of weights,
functions, or parameters of the computational layers of the
encoding component can be modified based on the difler-
ences between the output data produced by the decoding
component and the imput data provided to the encoding
component until the diflerences are minimized. In various
examples, the weights, functions, and/or parameters of the
computational layers of the decoding component can remain
fixed during the training of the autoencoder. In this way, the
training of the autoencoder according to mmplementations
described herein can utilize fewer computational resources
than existing techniques for the training of autoencoders that
modily features of the computational layers of both the
encoding component and the decoding component.

[0015] Adfter training, the autoencoder, base sequence data
can be provided to the encoding component. The base
sequence data can correspond to an amino acid sequence of
a base protein. The encoder can produce code data that 1s a
representation of the base sequence data. The decoding
component can generate variant protein sequences based on
the code data. In one or more examples, the code data can
be modified, and the modified code data can be provided to
the decoding component. The decoding component can then
use the modified code data to generate variant sequence data
that corresponds to amino acid sequences of variants of the
base protein. In one or more additional examples, the
decoding component can generate variant sequence data
based on the code data without modification of the code
data. To 1llustrate, the code data can be processed multiple
times by the decoding component and the decoding com-
ponent can generate data corresponding to diflerent amino
acid sequences of vaniants of the base protein for individual
passes of the code data through the decoding component. As
used herein, variant, variant protein, and similar terms can
refer to a protein that differs from a base protein at one or
more positions. For example, an amino acid sequence of a
base protein can indicate amino acids located at a number of
positions of the base protein and a variant of the base protein
can include at least one position having an amino acid that
1s different from the base protein at the same, corresponding
position. The variants of the base protein can have at least a
threshold amount of identity with the base protein.

[0016] In one or more examples, transier learning tech-
niques can be implemented such that an autoencoder can
produce variants of a base protein that have one or more
characteristics of interest. The transfer learning can be
implemented with respect to a generative adversarial net-
work that includes a generating component that comprises
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the decoding component of the autoencoder. In these sce-
narios, the training data used 1n the transfer learning process
tor the generative adversarial network can include a number
of amino acid sequences of proteins having the one or more
characteristics of interest. In various examples, transfer
learning can be implemented to cause the autoencoder to
produce variants of a base protein that have one or more
structural features of interest. In one or more 1illustrative
examples, transter learning can be implemented such that
the autoencoder can generate amino acid sequences of
proteins having one or more polar regions having a specified
range of amino acids included 1n each polar region. Addi-
tionally, transier learning can be implemented to cause the
autoencoder to produce variants of the base protein that have
one or more biophysical properties of interest. To 1llustrate,
transier learning can be used to produce an autoencoder that
generates amino acid sequences of proteins that have at least
a threshold melting temperature.

[0017] The implementations described herein that include
training a generative adversarial network and then traiming
an autoencoder that includes the generating component of
the generative adversarial network as a decoding component
can result 1n increased efliciency with respect to training the
autoencoder. For example, since the decoding component
has already been trained to generate amino acid sequences
having a set of characteristics, a reduction 1n the adjustments
to the encoding component during training i1s realized in
relation to a situation where the encoding component and the
decoding component are being trained concurrently. To
illustrate, a generative adversarial network can be trained to
generate amino acid sequences that have characteristics of
antibodies. In these situations, since the decoding compo-
nent 1s already trained to produce amino acid sequences of
antibodies, the encoding component 1s able to be trained
more quickly and efliciently to produce amino acid
sequences that include characteristics of antibodies based on
the feedback obtained from the decoding component. Fur-
ther, training a generating component of a generative adver-
sarial network as a decoding component of an autoencoder
to produce amino acid sequences of antibodies can cause
higher order interactions of the antibodies to be embedded 1n
the weights of the generating component and, in this way,
modifications to the code data can produce variant amino
acid sequences that have chemically relevant changes that
may be difficult to predict from first order principles.

[0018] In addition, the systems, techniques, architectures,
and processes described herein can be implemented such
that changes to the code data can result 1n linear or generally
linear changes of one or more variant amino acid sequences
produced with respect to one or more base sequences. For
example, relatively small changes to the code data can result
in relatively small changes to the varniant amino acid
sequences 1n relation to base amino acid sequences while
relatively large changes to the code data can result in
relatively large changes to the variant amino acid sequences
in relation to the base amino acid sequences. In this way, the
amount of varnation produced 1n the variant sequences can
be controlled to a greater degree than existing systems and
processes. Also, manual modifications made to an input
amino acid sequence can be realized 1n the code data in such
a way that changes to amino acids at other positions of the
input sequence that may be necessitated by the initial,
manual change(s) are produced 1n the variant amino acid
sequences. To 1llustrate, to preserve one or more character-
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istics of amino acid sequences produced by the decoding
component, the encoding component can modily the code
data such that variant amino acid sequences ol a parent
amino acid sequence that has been manually modified in at
least one position also have the one or more characteristics.

[0019] As used herein, structural features of proteins can
refer to features of one or more amino acids or features of
one or more groups of amino acids included 1n a protein
molecule. Examples of structural features can include at
least one of hydrophobic regions that include one or more
amino acids, negatively charged regions that include one or
more amino acids, positively charged regions that include
one or more amino acids, basic regions that include one or
more amino acids, acidic regions that include one or more
amino acids, regions that include one or more aromatic
amino acids, neutral regions that include one or more amino
acids, a measure ol diversity of neighboring residues, a
measure of residues interacting in 1omc bonds, or regions of
amino acids participating in at least one of an a-helix, a
B3-turn, a p-sheet, or an £2-loop. In addition, as used herein
biophysical properties of proteins can refer to characteristics
that can be measured with respect to a protein molecule.
Examples of biophysical properties of proteins can include
at least one of melting temperature, unfolding temperature,
measures of aggregation, measures of stability, measures of
molecular weight, measures of interactions between regions
as determine by self-interaction nanoparticle spectroscopy
(SINS), measures of viscosity, or measures ol solubility.

[0020] FIG. 1 1s a diagram 1llustrating an example frame-
work 100 to generate an autoencoder that includes a decod-
ing component that implements one or more components of
a generative adversarial network, 1n accordance with some
implementations. The framework 100 can include an auto-
encoder 102 that comprises an encoding component 104 and
a decoding component 106. The autoencoder 102 can com-
prise at least one of autoencoder computer-readable mnstruc-
tions, autoencoder logic, or autoencoder circuitry. In addi-
tion, the encoding component 104 can include at least one of
encoding computer-readable instructions, encoding logic, or
encoding circuitry. Further, the decoding component 106
can include at least one of decoding computer-readable
instructions, decoding logic, or decoding circuitry.

[0021] The encoding component 104 can include first
computational layers with each first computational layer
comprising a number ol nodes that each have at least one
function and one or more weights. The decoding component
106 can include second computational layers with each
second computational layer comprising a number of nodes
that each have at least function and one or more weights. In
various examples, a portion of the first computational layers
and a portion of the second computational layers can include
tully connected layers. In one or more examples, at least a
portion of the functions and/or weights of the first compu-
tational layers can be different with respect to the functions
and/or weights of the second computational layers. The
decoding component 106 can 1nclude at least a portion of
one or more generative adversarial networks 108. For
example, the decoding component 106 can include a gen-
erating component of the one or more generative adversarial
networks 108. The encoding component 104 and/or the
decoding component The one or more generative adversarial
networks 108 can include at least one of generative adver-
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sarial network computer-readable instructions, generative
adversarial network logic, or generative adversarial network
circuitry.

[0022] The encoding component 104 can generate first
code data 110 that 1s a representation of input provided to the
encoding component 104. The first code data 110 can
correspond to a compressed version of mput data provided
to the encoding component 104. The first code data 110 1s
provided to the decoding component 106. The decoding
component 106 can generate output of the autoencoder 102
based on the first code data 110. In various examples, the
decoding component 106 can generate output data that
corresponds to the mput data provided to the encoding
component 104.

[0023] The autoencoder 102 can undergo a training pro-
cess using training data 112. The training of the autoencoder
102 can include training of the encoding component 104. In
one or more examples, the decoding component 106 can be
trained before the training of the encoding component 104
using the training data 112 takes place. That 1s, the one or
more generative adversarial networks 108 can be trained
outside of a tramning process for the autoencoder 102. In
various examples, the one or more generative adversarial
networks 108 can be trained to generate sequence data that
corresponds to amino acid sequences of proteins. In these
scenarios, the encoding component 104 can be tramned to
produce the first code data 110 that can be provided to the
decoding component 106 to generate the sequence data. In
one or more illustrative examples, the traiming data 112 can
include training sequences 114 that correspond to a number
of amino acid sequences ol proteins. In one or more addi-
tional implementations, at least a portion of the traiming data
112 can be produced by the one or more generative adver-
sarial networks 108. The training data 112 can be stored by

one or more data stores that are accessible to the autoencoder
102.

[0024] During the training of the encoding component
104, a training sequence 114 can be provided to the encoding,
component 104 and the encoding component 104 can gen-
crate the first code data 110 that 1s a representation of the
training sequence 114. In one or more illustrative examples,
the first code data 110 can 1nclude a compressed version of
the training sequence 114 that utilizes less data to represent
the training sequence 114 than the imitial data included in the
training data 112 that was used to represent the traiming
sequence 114. The first code data 110 can then be provided
to the decoding component 106 and the decoding component
106 can generate output based on the first code data 110. The
output generated by the decoding component 106 can
include an output sequence that can be analyzed with respect
to the training sequence 114 that the encoding component
104 used to generate the first code data 110. Dafferences
between the output sequence and the training sequence 114
can be used to modily at least one loss function of the
autoencoder 102. The training process for the autoencoder
102 can minimize the loss function of the autoencoder 102.
In one or more examples, minimizing the loss function of the
autoencoder 102 can include minimizing differences
between the output sequences generated by the decoding
component 106 and the traiming sequences 114 obtained by
the encoding component 104. In at least some 1implementa-
tions, the training of the autoencoder 102 can be complete
when at least a threshold percentage of output sequences
produced by the decoding component 106 have less than a
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threshold number of differences with respect to correspond-
ing traming sequences 114 used by the encoding component
104 to produce the first code data 110. In one or more
additional examples, the encoding component 104 can be
tramned using tramning sequences 114 that the decoding
component 106 1s unable to reproduce. In these instances,
the training of the encoding component 104 can be complete
in response to determining that the loss function of the
autoencoder 102 has been minimized.

[0025] Adter training of the autoencoder 102 1s complete,
a trained autoencoder 116 can be produced. The trained
autoencoder 116 can 1nclude a trained encoding component
118 and the decoding component 106. In these implemen-
tations, the computational layers of the decoding component
106 have not been modified or have been modified to a
relatively minor degree during the training of the autoen-
coder 102. The trained autoencoder 116 can produce amino
acid sequences of variants of base proteins. In one or more
illustrative examples, the proteins can include amino acid
sequences of fibronectin type III (FNIII) proteins, avimers,
antibodies, VHH domains, kinases, zinc fingers, T-cell
receptors, combinations thereof, and the like. In various
examples, the amino acid sequences produced by the trained
autoencoder 116 can include portions of proteins. In one or
more implementations, the tramned autoencoder 116 can
produce amino acid sequences of portions of antibodies,
such as at least a portion of one or more complementarity
determining regions (CDRs) of antibodies, at least a portion
ol one or more light chains of antibodies, at least a portion
ol one or more heavy chains of antibodies, at least a portion
of one or more varniable regions of antibodies, at least a
portion of one or more constant regions of antibodies, at
least a portion of one or more hinge regions of antibodies,
at least a portion of one or more antigen binding regions of
antibodies, one or more combinations thereot, and so forth.

[0026] In one or more examples, base sequence data 120
can be obtained by the trained encoding component 118. The
base sequence data 120 can include one or more base
sequences 122 that correspond to one or more amino acid
sequences of one or more base proteins. The trained encod-
ing component 118 can generate second code data 124 based
on the base sequence data 120. The second code data 124
can correspond to a representation of the base sequence data
120. In various examples, the second code data 124 can
correspond to a compressed version of the base sequence
data 120. The decoding component 106 can generate variant
sequence data 126 based on the second code data 124. The
variant sequence data 126 can include one or more varnant
sequences 128 that correspond to one or more amino acid
sequences ol proteins that are variants of the base proteins
associated with the base sequences 122. For example, a
variant sequence 128 can include at least one amino acid that
1s different from the amino acid located at the same position
in a corresponding base sequence 122.

[0027] In situations where the encoding component 104 1s
trained to produce the first code data 110 such that the
decoding component 106 1s unable to reproduce the training
sequences 114, the second code data 124 may not be
modified when provided to the decoding component 106.
Thus, the second code data 124 generated by the trained
encoding component 118 can be used directly by the decod-
ing component 106 to produce one or more variant
sequences 128 that correspond to one or more base
sequences 122. In additional scenarios, the second code data
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124 can be modified to produce modified second code data
130 that 1s used by the decoding component 106 to generate
one or more variant sequences 128 that correspond to one or
more base sequences 122. In one or more 1illustrative
examples, the second code data 124 can include a matrix
having a plurality of numerical values. In these instances,
the modified second code data 130 can include modifications
to one or more of the numerical values included 1n the
matrix. The number of numerical values 1n the matrix that
are modified can correspond to a number of changes 1n the
base sequence 122 that are included in the one or more
varlant sequences 128. To 1illustrate, as the number of
numerical values modified in the matrix from the second
code data 124 to the modified second code data 130
increases, the number of positions of the one or more varant
sequences 128 that are diflerent from the corresponding
positions in the base sequence 122 can also increase. Addi-
tionally, the magnitude of changes to the individual numerti-
cal values included in the matrix corresponding to the
second code data 124 used to produce the modified second
code data 130 can impact the number of positions of the base
sequence 122 that are modified i the one or more vanant
sequences 128 produced based on the modified second code
data 130. For example, as the magnitude of changes to
individual numerical values of the matrix included in the
second code data 124 increases, the number of positions of
the base sequence 122 that have amino acids that are
modified 1n relation to the one or more variant sequences
128 can also increase. That 1s, as at least one of the number
of numerical values of the matrix increases or the magnitude
of change of individual numerical values of the matrix
increases to produce the modified second code data 130, the
amount of 1dentity between the one or more base sequences
122 and the one or more variant sequences 128 decreases.

[0028] In one or more additional 1llustrative examples, the
individual numerical values included 1n the matrix can range
from -1 to +1. In these scenarios, a number of changes to
one or more variant sequences 128 with respect to the one
or more base sequences 122 and an amount of change in the
individual values of the matrix from the second code data
124 to the modified second code data 130 can indicate a
number of differences between the one or more base
sequences 122 and the one or more variant sequences 128.
For example, an adjustment 1n one to three numerical values
of the second code data 124 by from about 2% to about 5%
to produce the modified second code data 130 can produce
one or more variant sequences 128 having from about one
residue to about ten residues that are different from the one
or more base sequences 122. The adjustments to the 1ndi-
vidual numerical values of the second code data 124 can be
produced according to a random or pseudo-random number
generating algorithm.

[0029] In one or more implementations, after the trained
autoencoder 116 1s produced, at least one transier learning
process can be performed that can modity the amino acid
sequences produced by the one or more generative adver-
sarial networks 108 included in the decoding component
106. For example, the one or more generative adversarial
networks 108 can be 1nmitially trained to produce amino acid
sequences of proteins and, after one or more transfer learn-
ing processes are performed, the one or more generative
adversarial networks 108 can be trained to produce amino
acid sequences having one or more structural features of
interest and/or one or more specified biophysical properties
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of interest. In one or more 1llustrative examples, after one or
more transier learning processes, the one or more generative
adversarial networks 108 can produce amino acid sequences
ol antibodies that have at least a threshold unfolding tem-
perature. In one or more additional illustrative examples,
alter one or more transifer learning processes, the one or
more generative adversarial networks 108 can produce
amino acid sequences of antibodies that have one or more
negatively charged patches that include a specified range of
numbers of amino acids.

[0030] The tramed autoencoder 116 can be further trained
in response to the one or more generative adversarial net-
works 108 undergoing one or more transifer learning pro-
cesses. The further training of the trained autoencoder 116
can produce an additional trained autoencoder that generates
amino acid sequences of proteins having the one or more
characteristics that were the subject of the one or more
transier learning processes. To 1llustrate, 1n scenarios where
the one or more generative adversarial networks 108 have
been subjected to one or more transier learning processes to
train the one or more generative adversarial networks 108 to
generate amino acid sequences of proteins having no greater
than a threshold viscosity 1n water, the trained autoencoder
116 can be further trained to produce variant sequences 128
of proteins that have at least a threshold probability of
having no greater than the threshold viscosity 1n water.

[0031] FIG. 2 15 a diagram 1llustrating an example frame-
work 200 to train a generative adversarial network for use as
a decoding component of an autoencoder, 1 accordance
with some implementations. The framework 200 can include
a generative adversarial network architecture 202. The gen-
erative adversarial network architecture 202 can include a
generating component 204 and a challenging component
206. The generative adversarial network architecture 202
can include at least one of generative adversarial network
computer-readable instructions, generative adversarial net-
work logic, or generative adversarial network circuitry. In
addition, the generating component 204 can be implemented
using at least one of computer-readable structions, logic,
or circuitry. Further, the challenging component 206 can be
implemented using at least one of computer-readable
instructions, logic, or circuitry.

[0032] The generating component 204 can implement one
or more models to generate amino acid sequences based on
input provided to the generating component 204. In various
implementations, the one or more models implemented by
the generating component 204 can include one or more
functions and one or more weights. The challenging com-
ponent 206 can generate output indicating whether the
amino acid sequences produced by the generating compo-
nent 204 correspond to various characteristics. The output
produced by the challenging component 206 can be pro-
vided to the generating component 204 and the one or more
models implemented by the generating component 204 can
be modified based on the feedback provided by the chal-
lenging component 206. In various implementations, the
challenging component 206 can analyze the amino acid
sequences generated by the generating component 204 with
amino acid sequences ol proteins included 1n training data
and generate an output mdicating an amount of correspon-
dence between the amino acid sequences produced by the
generating component 204 and the amino acid sequences of
proteins provided to the challenging component 206 as

training data. In one or more illustrative examples, the
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analysis performed by the challenging component 206 with
respect to the amino acid sequences produced by the gen-
erating component 204 can include a comparison between
the amino acid sequences included in the training data and
the amino acid sequences produced by the generating com-
ponent 204,

[0033] In various implementations, the generative adver-
sarial network architecture 202 can implement one or more
neural network technologies. For example, the generative
adversarial network architecture 202 can implement one or
more recurrent neural networks. Additionally, the generative
adversarial network architecture 202 can implement one or
more convolutional neural networks. In one or more 1mple-
mentations, the generative adversarial network architecture
202 can implement a combination of recurrent neural net-
works and convolutional neural networks. In one or more
additional examples, the generating component 204 can
include a generator and the challenging component 206 can
include a discriminator. In one or more further implemen-
tations, the generative adversarial network architecture 202
can include a Wasserstein generative adversarial network
(WGAN). In these scenarios, the generating component 204
can 1nclude a generator and the challenging component 206
can include a critic.

[0034] In the illustrative example of FIG. 2, an 1nput
vector 208 can be provided to the generating component 204
and the generating component 204 can produce one or more
generated sequences 210 from the iput vector 208 using
one or more models. In one or more implementations, the
input vector 208 can include noise data that 1s generated by
a random number generator or a pseudo-random number
generator. The generated sequence(s) 210 can be compared
by the challenging component 206 against sequences of
proteins included in protein sequence data 212 that have
been structured according to one or more schemas. The
protein sequence data 212 can include sequences of proteins
obtained from one or more data sources that store amino acid
sequences of proteins. The protein sequence data 212 can be
training data for the generative adversarial network archi-
tecture 202.

[0035] Based on similarities and/or differences between
the generated sequence(s) 210 and the sequences obtained
from the protein sequence data 212, the challenging com-
ponent 206 can generate a classification output 214 that
indicates an amount of similarity and/or an amount of
difference between the generated sequence 210 and
sequences included 1n the protein sequence data 212. In one
or more examples, the challenging component 206 can label
the generated sequence(s) 210 as zero and the sequences
obtained from the protein sequence data 212 as can be
labeled as one. In these situations, the classification output
214 can correspond to a number from 0 and 1. In additional
examples, the challenging component 206 can implement a
distance function that produces an output that indicates an
amount of distance between the generated sequence(s) 210
and the proteins included 1n the protein sequence data 212.
In these scenarios, the challenging component 206 can label
the generated sequence(s) 210 as —1 and the encoded amino
acid sequences obtained from the protein sequence data 212
as 1. In implementations where the challenging component
206 implements a distance function, the classification output
214 can be a number from —co to c. In various examples, the
amino acid sequences obtained from the protein sequence
data 212 can be referred to as ground truth data.
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[0036] The protemn sequences included in the protein
sequence data 212 can be subject to data preprocessing 216
betore being provided to the challenging component 206. In
one or more implementations, the protein sequence data 212
can be arranged according to a classification system before
being provided to the challenging component 206. The data
preprocessing 216 can include pairing amino acids included
in the proteins of the protein sequence data 212 with
numerical values that can represent structure-based posi-
tions within the proteins. The numerical values can include
a sequence of numbers having a starting point and an ending
point. In an illustrative example, a T can be paired with the
number 43 indicating that a Threonine molecule 1s located at
a structure-based position 43 of a specified protein domain
type. In one or more illustrative examples, structure-based
numbering can be applied to any general protein type, such
as fibronectin type 111 (FNIII) proteins, avimers, antibodies,
VHH domains, kinases, zinc fingers, and the like.

[0037] In one or more implementations, the classification
system 1mplemented by the data preprocessing 216 can
designate a particular number of positions for certain regions
of protemns. For example, the classification system can
designate that portions of proteins having particular func-
tions and/or characteristics can have a specified number of
positions. In various situations, not all of the positions
included 1n the classification system may be associated with
an amino acid because the number of amino acids in a
specified region of a protein may vary between proteins. To
illustrate, the number of amino acids 1n a region of a protein
can vary lor different types of proteins. In one or more
examples, positions of the classification system that are not
associated with a particular amino acid can indicate various
structural features of a protein, such as a turn or a loop. In
an illustrative example, a classification system for antibodies
can indicate that heavy chain regions, light chain regions,
and hinge regions have a specified number of positions
assigned to them and the amino acids of the antibodies can
be assigned to the positions according to the classification
system.

[0038] The data used to train the generative adversarial
network architecture 202 can impact the amino acid
sequences produced by the generating component 204. For
example, 1n situations where antibodies are included 1n the
protein sequence data 212 provided to the challenging
component 206, the amino acid sequences generated by the
generating component 204 can correspond to antibody
amino acid sequences. In another example, 1n scenarios
where T-cell receptors are included 1n the protein sequence
data 212 provided to the challenging component 206 the
amino acid sequences generated by the generating compo-
nent 204 can correspond to T-cell receptor amino acid
sequences. In one or more additional examples, 1n situations
where kinases are included 1n the protein sequence data 212
provided to the challenging component 206, the amino acid
sequences generated by the generating component 204 can
correspond to amino acid sequences of kinases. In imple-
mentations where amino acid sequences of a variety of
different types of protemns are included in the proten
sequence data 212 provided to the challenging component
206, the generating component 204 can generate amino acid
sequences having characteristics of proteins generally and
may not correspond to a particular type of protein.

[0039] The output produced by the data preprocessing 216
can 1nclude structured sequences 218. The structured
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sequences 218 can include a matrix indicating amino acids
associated with various positions of a protein. In one or more
examples, the structured sequences 218 can include a matrix
having columns corresponding to different amino acids and
rows that correspond to structure-based positions of pro-
teins. For each element in the matrix, a 0 can be used to
indicate the absence of an amino acid at the corresponding
position and a 1 can be used to indicate the presence of an
amino acid at the corresponding position. In situations
where a position represents a gap 1n an amino acid sequence,
the row associated with the position can comprise zeroes for
cach column. The generated sequence(s) 210 can also be
represented using a vector according to a same or similar
number scheme as used for the structured sequences 218. In
one or more illustrative examples, the structured sequences
218 and the generated sequence(s) 210 can be encoded using
a method that may be referred to as a one-hot encoding
method.

[0040] Adter the generative adversarial network architec-
ture 202 has undergone a training process, one or more
trained generating components 220 can be generated that
can produce amino acid sequences of proteins. In one or
more examples, the training process for the generative
adversarial network architecture 202 can be complete after
the function(s) implemented by the generating component
204 and the function(s) implemented by the challenging
component 206 converge. The convergence of a function
can be based on the movement of values of model param-
cters toward specified values as protein sequences are gen-
crated by the generating component 204 and feedback 1is
obtained from the challenging component 206. In various
implementations, the training of the generative adversarial
network architecture 202 can be complete when the protein
sequences generated by the generating component 204 have
one or more specified characteristics. To illustrate, the amino
acid sequences generated by the generating component 204
can be analyzed by a software tool that can analyze amino
acid sequences to determine at least one of biophysical
properties of the amino acid sequences, structural features of
the amino acid sequences, or adherence to amino acid
sequences corresponding to one or more protein germlines.

[0041] The one or more trained generating components
220 can included in an autoencoder training process 222.
The autoencoder training process 222 can be implemented to
train an autoencoder 224 to generate amino acid sequences
of proteins. The autoencoder 224 can include an encoding
component 226 and a decoding component 228. The decod-
ing component 228 can include the one or more trained
generating components 220. The encoding component 226
can produce code data 230 that 1s a representation of 1mput
obtained by the encoding component 226. The decoding
component 228 can generate output that corresponds to the
input obtained by the encoding component 226 based on the

code data 230.

[0042] The autoencoder training process 222 can be
implemented such that output generated by the decoding
component 228 based on the code data 230 15 analyzed with
respect to the mput obtained by the encoding component
226. During the autoencoder traiming process 222, the mput
data obtained by the encoding component 226 can include
training data. In one or more examples, the training data can
include amino acid sequences produced by the one or more
trained generating components 220. The autoencoder train-
ing process 222 can be performed until the output produced
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by the decoding component 228 based on the code data 230
has at least a threshold amount of correspondence with the
input obtained by the encoding component 226. In one or
more illustrative examples, the threshold amount of corre-
spondence between the output produced by the decoding
component 228 and the input obtained by the encoding
component 226 can be related to an amount of similarity
between amino acid sequences generated by the decoding
component 228 and amino acid sequences of training data
obtained by the encoding component 226. The amount of
similarity between amino acid sequences generated by the
decoding component 228 and amino acid sequences of
training data obtained by the encoding component 226 can
indicate an amount of 1dentity between the input sequences
obtained by the encoding component 226 and the output
sequences produced by the decoding component 228.

[0043] The autoencoder training process 222 can produce
a trained autoencoder 232. Although previous implementa-
tions ol autoencoders include an encoding component hav-
ing a number of computational layers that are mirrored in the
decoding component, 1n implementations described herein,
the traimned autoencoder 232 can include an encoder and a
decoder that have computational layers that are not mirrors
with respect to one another. The trained autoencoder 232 can
obtain one or more base sequences 234 and produce one or
more variant sequences 236 based on the one or more base
sequences 234. A base sequence 234 can include an amino
acid sequence of a base protein and the one or more variant
sequences 236 can 1include amino acid sequences of variant
proteins that differ 1n at least one position from the base
protein. In various examples, the trained autoencoder 232
can include a trained encoding component that produces
code data based on a base sequence 234 and the code data
can be utilized by a decoding component of the trained
autoencoder 232 to produce the one or more variant
sequences 236.

[0044] FIG. 3 15 a diagram 1llustrating an example frame-
work 300 to perform transfer learning with respect to a first
generative adversarial network and produce a second gen-
erative adversarial network that can be used as a decoding
component of an autoencoder, in accordance with some
implementations. By implementing transier learning tech-
niques with respect to generative adversarial networks that
operate as decoding components of autoencoders, amino
acid sequences of variant proteins can be produced based on
at least one amino acid sequence of a base protein, where the
variant proteins have one or more specified structural fea-
tures and/or one or more specified biophysical properties.

[0045] The framework 300 can include a first generative
adversarial network training process 302. The first genera-
tive adversarnal network training process 302 can include
training one or more first generative adversarial networks
304 to produce amino acid sequences of proteins. The one or
more first generative adversarial networks 304 can include
one or more generating components and one or more chal-
lenging components. In one or more examples, the first
generative adversarial network training process 302 can
include training a first generative adversarial network 304 to
produce amino acid sequences of antibodies. The one or
more challenging components can analyze amino acid
sequences produced by the one or more generating compo-
nents with respect to training data that includes a number of
amino acid sequences of proteins. For example, the first
generative adversarial network training process 302 can
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train the one or more first generative adversarial networks
304 based on first protein sequence data 306. The first
protein sequence data 306 can include amino acid sequences
of a number of proteins obtained from one or more data
sources and stored 1n one or more databases that are acces-
sible to the one or more first generative adversarial networks
304. The first generative adversarial network training pro-
cess 302 can proceed until one or more criteria have been
satisfied. The one or more criteria can 1indicate one or more
characteristics of proteins that correspond to amino acid
sequences of proteins produced by the one or more first
generative adversarial networks 304. The one or more
criteria can also be related to the convergence of one or more
functions implemented by the one or more first generative
adversarial networks 304. In various examples, the amino
acid sequences produced by a first generative adversarial
network 304 that has undergone the first generative adver-
sarial network training process 302 can have one or more
structural features and/or one or more biophysical properties
that correspond to at least a portion of the structural features
and/or at least a portion of the biophysical properties of the
proteins that correspond to the amino acid sequences
included 1n the first protein sequence data 306.

[0046] Adfter training one or more first generative adver-
sarial networks 304 according to the first generative adver-
sarial network training process 302, one or more first trained
generating components 308 can be produced that generate
amino acid sequences ol proteins. The one or more {first
trained generating components 308 can be used 1n a first
autoencoder training process 310. The first autoencoder
training process 310 can train a first autoencoder 312. The
first autoencoder 312 can include an encoding component
and a decoding component. The decoding component can
comprise a first trained generating component 308. The first
autoencoder 312 can be tramned using second protein
sequence data 314. The second protein sequence data 314
can 1nclude amino acid sequences of proteins that have been
obtained from one or more data sources. In one or more
examples, the second protein sequence data 314 can include
amino acid sequences generated by a first trained generating
component 308. In one or more illustrative examples, during
the first autoencoder traiming process 310, amino acid
sequences 1ncluded 1n the second protein sequence data 314
can be obtamned by an encoding component of the first
autoencoder 312 and the encoding component can generate
code data that corresponds to a representation of the mput
amino acid sequences. The decoding component of the first
autoencoder 312 can generate an output amino acid
sequence based on the representation produced by the
encoding component. The first autoencoder training process
310 can proceed until one or more criteria for training the
first autoencoder 312 have been satisfied. The one or more
criteria used to determine when to stop the first autoencoder
training process 310 can be related to measures of similarity
between the amino acid sequences providing as training data
from the second protein sequence data 314 and the amino
acid sequences produced by the decoding component of the
first autoencoder 312 based on the code data generated by
the encoding component of the first autoencoder 312.

[0047] The first autoencoder training process 310 can
produce a first trained autoencoder 316. The first trained

autoencoder 316 can include a first encoding component 318
that produces first code data 320. The first code data 320 can
include a representation of data provided as mput to the first
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encoding component 318. The first trained autoencoder 316
can also include a first decoding component 322. In one or
more examples, the first decoding component 322 can
include a first trained generating component 308. In various
examples, computational layers of a first trained generating
component 308 that i1s included 1n the first autoencoder 312
can remain unchanged during the first autoencoder training
process 310. In these scenarios, the computational layers of
the first decoding component 322 correspond to the com-

putational layers of the first trained generating component
308 included 1n the first autoencoder 312.

[0048] In one or more implementations, the first tramned
autoencoder 316 can obtain {first base sequence data 324.
The first base sequence data 324 can correspond to amino
acid sequences of one or more base proteins. The first trained
autoencoder 316 can generate first variant sequence data 326
based on the first base sequence data 324. The first variant
sequence data 326 can correspond to amino acid sequences
of proteins that are variants of the base protein related to the
first base sequence data 324. The variant proteins can have
an amino acid 1n at least one position that 1s different from
the amino acid in the same position of the base protein. In
one or more illustrative examples, the first encoding com-
ponent 318 can obtain the first base sequence data 324 and
generate the first code data 320. In these situations, the first
code data 320 can correspond to a representation of the first
base sequence data 324. In various examples, the first code
data 320 can correspond to a compressed version of the first
base sequence data 324. The first decoding component 322
can generate the first variant sequence data 326 based on the
first code data 320. In one or more examples, the first code
data 320 can be modified and the modified version of the
first code data 320 can be used by the first decoding
component 322 to generate the first variant sequence data
326. In one or more additional examples, the first decoding
component 322 can generate the first variant sequence data

326 directly from the first code data 320.

[0049] In addition to being included in the first autoen-
coder 312 and being part of the first autoencoder training
process 310, the one or more first trained generating com-
ponents 308 can also be included in a second generative
adversarial network training process 328. The second gen-
erative adversarial network training process 328 can be used
to train one or more second generative adversarial networks
330. The one or more second generative adversarial net-
works 330 can include a generating component that com-
prises a lirst trained generating component 308 and a chal-
lenging component. The one or more second generative
adversarial networks 330 can be trained according to third
protein sequence data 332. The third protein sequence data
332 can 1include amino acid sequences of a number of
proteins. The number of proteins corresponding to the amino
acid sequences of the third protein sequence data 332 can be
different from the proteins corresponding to the amino acid
sequences of the first protein sequence data 306 used 1n the
first generative adversarial network training process 302. In
one or more examples, the second generative adversarial
network traiming process 328 can implement transfer learn-
ing techniques that modity the first trained generating com-
ponents 308. By using a training dataset in the second
generative adversarial network training process 328 that i1s
different from the training dataset used 1n the first generative
adversarial network training process 302, the one or more
second generative adversarial networks 330 can produce
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amino acid sequences that can have some general charac-
teristics that correspond to the amino acid sequences
included 1n the first protein sequence data 306 and that also
have one or more specified characteristics that correspond to
features of the proteins related to the amino acid sequences
included 1n the third protein sequence data 332.

[0050] In various implementations, the one or more {first
trained generating components 308 can be further trained
using the third protein sequence data 332 as part of a transier
learning process to produce one or more second trained
generating components 334 1n a manner that 1s similar to the
training ol the one or more first generative adversarial
networks 304 that produced the one or more first trained
generating components 308. In one or more examples,
components ol the one or more second generative adver-
sarial networks 330 can be trained to minimize at least one
loss function. Additionally, the second generative adver-
sarial network training process 328 used to produce the one
or more second tramned generating components 334 can be
complete after one or more modified functions implemented
by the one or more second generative adversarial networks
330 converge. In one or more further examples, the second
generative adversarial network training process 328 can be
complete based on an analysis of a software tool indicating
that amino acid sequences produced using the one or more
second generative adversarial networks 330 corresponds to
one or more specified criteria. The one or more specified
criteria can correspond to proteins associated with the amino
acid sequences produced by the generating component of a
second generative adversarial network 330 having at least
one of one or more structural features of interest or one or
more biophysical properties of interest.

[0051] In one or more examples, the third protein
sequence data 332 can include amino acid sequences of
proteins that have features that are different from the features
of the proteins related to the first protein sequence data 306.
In various examples, the third protein sequence data 332 can
include a subset of the amino acid sequences included in the
first protein sequence data 306. In additional examples, the
third protein sequence data 332 can include a greater number
of a group of amino acid sequences having one or more
specified characteristics in relation to the number of amino
acid sequences having the one or more characteristics
included 1n the first protein sequence data 306. For example,
the first protein sequence data 306 can include amino acid
sequences of proteins having a variety of structural features.
To 1llustrate, the first protein sequence data 306 can include
a number of amino acid sequences of proteins having one or
more sizes of hydrophobic regions, a number of amino acid
sequences of proteins having one or more sizes of negatively
charged regions, a number of amino acid sequences of
proteins having one or more sizes ol positively charged
regions, a number of amino acid sequences ol proteins one
or more sizes ol polar regions, one or more combinations
thereof, and the like. In one or more implementations, the
third protein sequence data 332 can include amino acid
sequences of proteins that have a greater number of amino
acid sequences of proteins having a subset of the properties
of the proteins included 1n the first protein sequence data
306, such as a greater number of amino acid sequences of
proteins that have hydrophobic regions with a specified
range ol sizes than the number of amino acid sequences
included 1n the first protein sequence data 306 that have the
hydrophobic regions with the specified range of sizes. In
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these scenarios, the one or more second trained generating
components 334 can primarily produce amino acid
sequences of proteins having hydrophobic regions with the
specified range of sizes.

[0052] In one or more implementations, the amino acid
sequences 1ncluded 1n the third protein sequence data 332
can 1nclude a filtered set of amino acid sequences. For
example, a set of amino acid sequences can be evaluated
according to one or more criteria. In various examples, at
least one of one or more software tools, one or more
diagnostic tools, or one or more analytical instruments can
be used to 1dentily amino acid sequences 1included 1n the set
of amino acid sequences that correspond to the one or more
criteria. The amino acid sequences that satisiy the one or
more criteria can then be added to the third protein sequence
data 332. In one or more illustrative examples, a number of
amino acid sequences can be evaluated to 1dentily proteins
having at least one polar region for inclusion in the third
protein sequence data 332. In these scenarios, the amino acid
sequences that include at least one polar region can be used
to modily the one or more first trained generating compo-
nents 308 during the second generative adversarial network
training process 328 to produce the one or more second
trained generating components 334 that have at least a
threshold probability of generating amino acid sequences of
proteins having at least one polar region.

[0053] The first trained autoencoder 316 and the one or
more second trained generating components 334 can be used
in a second autoencoder training process 336. The second
autoencoder training process 336 can train a second auto-
encoder 338 that includes the first encoding component 318
and a decoding component that comprises a second trained
generating component 334. The second autoencoder 338 can
be trained using fourth protein sequence data 340. The
fourth protein sequence data 340 can include amino acid
sequences of proteins that have been obtained from one or
more data sources. In one or more examples, the fourth
protein sequence data 340 can include amino acid sequences
generated by at least one of the second trained generating
components 334.

[0054] In one or more implementations, during the second
autoencoder training process 336, amino acid sequences
included 1n the fourth protein sequence data 340 can be
obtained by an encoding component of the second autoen-
coder 338, such as the first encoding component 318, and the
encoding component can generate code data that corre-
sponds to a representation of the mput amino acid
sequences. The decoding component of the second autoen-
coder 338, such as a second trained generating component
334, can generate an output amino acid sequence based on
the representation produced by the encoding component.
The second autoencoder training process 336 can proceed
until one or more criteria for training the second autoencoder
338 have been satisfied. The one or more criteria used to
determine when to stop the second autoencoder training
process 336 can be related to measures of similarity between
the amino acid sequences providing as training data from the
fourth protein sequence data 340 and the amino acid
sequences produced by the decoding component of the
second autoencoder 338 based on the code data generated by
the encoding component of the second autoencoder 338.

[0055] The second autoencoder traiming process 336 can
produce a second trammed autoencoder 342. The second
trained autoencoder 342 can include a second encoding
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component 344 that produces second code data 346. The
second code data 346 can include a representation of data
obtained as 1nput to the second encoding component 344.
The second trained autoencoder 342 can also include a
second decoding component 348. In one or more examples,
the second decoding component 348 can include a second
trained generating component 334. In various examples,
computational layers of a second trained generating com-
ponent 334 that 1s included 1n the second autoencoder 338
can remain unchanged during the second autoencoder train-
ing process 336. In these scenarios, the computational layers
of the second decoding component 348 can correspond to
the computational layers of the second trained generating
component 334 included 1n the second autoencoder 338.

[0056] Inone or more implementations, the second trained
autoencoder 342 can obtain second base sequence data 350.
The second base sequence data 350 can correspond to amino
acid sequences of one or more base proteins. The second
trained autoencoder 342 can generate second variant
sequence data 352 based on the second base sequence data
350. The second variant sequence data 352 can correspond
to amino acid sequences of proteins that are variants of the
base protein related to the second base sequence data 350.
The vanant proteins can have an amino acid 1n at least one
position that 1s different from the amino acid in the same
position of the base protein. In one or more illustrative
examples, the second encoding component 344 can obtain
the second base sequence data 350 and generate the second
code data 346. In these situations, the second code data 346
can correspond to a representation of the second base
sequence data 350. In various examples, the second code
data 346 can correspond to a compressed version of the
second base sequence data 350. The second decoding com-
ponent 348 can generate the second variant sequence data
352 based on the second code data 346. In one or more
examples, the second code data 346 can be modified and the
modified version of the second code data 346 can be used by
the second decoding component 348 to generate the second
varlant sequence data 352. In one or more additional
examples, the second decoding component 348 can generate
the second variant sequence data 352 directly from the
second code data 346.

[0057] As a result of using at least one second trained
generating component 334 as the second decoding compo-
nent 348, the variant proteins that correspond to the second
variant sequence data 352 can have characteristics that
correspond to those of the proteins related to the amino acid
sequences included in the third protein sequence data 332.
That 1s, by performing a second generative adversarial
network training process 328 using traiming data that corre-
sponds to proteins have one or more structural features of
interest and/or one or more biophysical properties of inter-
est, the variant proteins that correspond to the amino acid
sequences of the second vanant sequence data 352 can also
have at least a threshold probability of having the one or
more structural features of interest and/or the one or more
biophysical properties of interest. Thus, the framework 400
can be implemented 1n scenarios where variant proteins of a
base protein are to be produced that have one or more
structural features of interest and/or one or more biophysical
properties of 1nterest. Additionally, by leveraging the learn-
ing that takes place to produce the one or more first trained
generating components 308 followed by the transfer learn-
ing using a more specialized training dataset with respect to
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the second generative adversarial network training process
328, the computing resources used to generate the second
variant sequence data 352 can be minimized and the accu-
racy of the characteristics of interest for the variant proteins
can be increased 1n relation to previous techmques.

[0058] Further, although a single additional generative
adversarial network training process (e.g., the second gen-
crative adversarial network training process 328) and a
single additional autoencoder training process (e.g., the
second autoencoder training process 336) are described with
respect to the illustrative example of FIG. 3, multiple
additional training processes for the generative adversarial
networks and autoencoders can be performed. In one or
more examples, the multiple structural features and/or mul-
tiple biophysical properties can be of interest with respect to
variant proteins of a base protein. In these scenarios, an
additional traiming dataset that includes amino acid
sequences of one or more of the structural features and/or
biophysical properties of interest can be used 1n one or more
additional transier learning processes to further train the
generating components of the generative adversarial net-
works. Modifications to the generating components of the
generative adversarial networks can result 1n modifications
to the encoding components and decoding components of
the autoencoders. Thus, with each additional training pro-
cess and subsequent modifications to the computational
layers of the generative adversarial network generating
components that operate as the decoding components for the
autoencoders and the modifications to the encoding compo-
nents, the characteristics of the proteins corresponding to the
amino acid sequences generated by the trained autoencoders
can be further modified.

[0059] Additionally, although the illustrative example of
FIG. 3 indicates the implementation of transfer learning
techniques by training the generating components of one or
more generative adversarial networks with different data-
sets, transier learning techniques can be implemented to
produce a second trained autoencoder from a first traimned
autoencoder by using a training dataset for the second
autoencoder training process that 1s not produced by a
generating component that has undergone a transier learning
process. For example, performing a transfer learning process
to generate the second trained generating components 334
using the first trained generating components 308 can be
absent from the framework 300. In these situations, the first
trained autoencoder 316 can be part of the second autoen-
coder training process 336. Continuing with this example, an
additional dataset, such as the third protein sequence data
332, can be used as training data for the second autoencoder
training process 336. Also in these scenarios, the second
autoencoder training process 336 can be diflerent from the
first autoencoder training process 310 because the compu-
tational layers of the first decoding component 322 may not
be held constant during the second autoencoder traiming
process 336. Thus, the computational layers of the first
encoding component 318 and the computational layers of
the first decoding component 322 can both be modified
during the second autoencoder training process 336.

[0060] FIG. 4 15 a diagram 1llustrating an example frame-
work 400 to modily code data produced by an encoding
component of an autoencoder to generate amino acid
sequences of variants of a base protein, 1n accordance with
some 1mplementations. The framework 400 can include a
trained autoencoder 402. The trained autoencoder 402 can
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be produced using one or more implementations of autoen-
coder training processes described 1n relation to at least one
of FIG. 1, FIG. 2, or FIG. 3. The trained autoencoder 402 can
be 1implemented using at least one of computer-readable
istructions, logic, or circuitry.

[0061] The tramned autoencoder 402 can include a trained
encoding component 404 that can produce code data 406
based on 1nput obtained by the trained encoding component
404. The code data 406 can include a representation of the
input obtained by the trained encoding component 404. The
code data 406 can be produced by a number of computa-
tional layers of the trained encoding component 404 based
on mput obtained by the trained encoding component 404.
In one or more examples, the code data 406 can include a
compressed representation of the mput obtained by the
trained encoding component 404. The compressed represen-
tation corresponding to the code data 406 can include less
data than the mput obtained by the trained encoding com-
ponent 404,

[0062] The trained autoencoder 402 can also include a
decoding component 408 The decoding component 408 can
generate output based on the code data 406. In one or more
examples, the output generated by the decoding component
408 based on the code data 406 can have at least a threshold
measure of similarity with respect to input obtained by the
trained encoding component 404. In the illustrative example
of FIG. 4, the decoding component 408 can include one or
more components ol one or more generative adversarial
networks 410. In various examples, the decoding component
408 can include one or more generating components of the
one or more generative adversarial networks 410.

[0063] The trained autoencoder 402 can perform code data
modification 412. The code data modification 412 can
include modifying one or more features of the code data 406
and providing the modified code data to the decoding
component 408. In these scenarios, the output produced by
the decoding component 408 can be based on an extent of
the modifications made to the code data 406. For example,
as the modifications to the code data 406 increase, difler-
ences between mput obtained by the trained encoding com-
ponent 404 and output generated by the decoding compo-
nent 408 can also increase.

[0064] In one or more implementations, the code data 406
can include a number of numerical values. In various
examples, the numerical values can be included 1n a range
of values. To 1llustrative, numerical values of the code data
406 can be included 1n a range from -1 to 1. In one or more
additional examples, the numerical values of the code data
406 can include floating point numbers. In one or more
illustrative examples, the code data 406 can include a matrix
of numerical values. For example, the code data 406 can
include a 1x296 matrix. In situations where the code data
406 includes a number of numerical values, modifying one
or more features of the code data 406 can include moditying
one or more numerical values of the code data 406. Modi-
fications to numerical values of the code data 406 can
include moditying a number of the numerical values. Addi-
tionally, modifications to the numerical values of the code

data 406 can include modifying respective magnitudes of the
individual numerical values. In one or more instances, an
extent of modification of the code data 406 can include at
least one of a number of numerical values of the code data
406 that are modified or a magnitude that individual numeri-
cal values of the code data 406 are modified.
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[0065] Input to the trained autoencoder 402 can include
base sequence data 414 that corresponds to one or more
amino acid sequences ol base proteins, such as a base
protein sequence 416. The trained encoding component 404
can produce code data 406 that corresponds to a represen-
tation of the base sequence data 414. For example, the
trained encoding component 404 can generate code data 406
that 1s a representation of the base protein sequence 416 and
includes less data than the base sequence data 414. Code
data modification 412 can take place that modifies one or
more numerical values of the code data 406 to produce
modified code data. The modified code data can be provided
to the decoding component 408 to produce output that
corresponds to amino acid sequences of variants of the base
protein sequence 416.

[0066] The output of the decoding component 408 based
on one or more modified versions of the code data 406 can
include variant sequence data 418. The code data modifica-
tion 412 can include modifying a number of the numerical
values of the code data 406 by a respective amount. Indi-
vidual numerical values of the code data 406 can be modi-
fied by different amounts. In one or more additional
examples, individual numerical values of the code data 406
can be modified by a same amount. In the illustrative
example of FIG. 4, the code data modification 412 can
include producing first modified code data 420, second
modified code data 422, up to Nth modified code data 424.
The first modified code data 420 can include first modifi-
cations to numerical values of the code data 406, the second
modified code data 422 can include second modifications to
numerical values of the code data 406, and the Nth modified
code data 424 can include Nth modifications to numerical
values of the code data 406. The first modifications used to
produce the first modified code data 420 can include first
modifications to a number of numerical values of the code
data 406 that are different from the second modifications of
the numerical values of the code data 406 used to generate
the second modified code data 422 and different from the
Nth modifications to numerical values of the code data 406
to produce the Nth modified code data 424. Additionally, the
second modifications made to the code data 406 to produce
the second modified code data 422 can be different from the

Nth modifications made to the code data 406 to generate the
Nth modified code data 424.

[0067] The differences between the first modified code
data 420, the second modified code data 422, and the Nth
modified code data 424 can be related to the number of
numerical values of the code data 406 modified with respect
to the first modified code data 420, the second modified code
data 422, and the Nth modified code data 424. For example,
a first number of numerical values of the code data 406 can
be modified to produce the first modified code data 420 and
a second number of numerical values of the code data 406
can be modified to produce the second modified code data
422, where the second number of numerical values i1s
different from the first number of numerical values. Further,
a third number of numerical values of the code data 406 can
be modified to produce the Nth modified code data 424 that
1s different from the first number of numerical values and the
second number of numerical values.

[0068] In one or more additional examples, the differences
between the first modified code data 420, the second modi-
fied code data 422, and the Nth modified code data 424 can

be related to the magnitude of changes to the numerical
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values of the code data 406 with respect to the first modified
code data 420, the second modified code data 422, and the
Nth modified code data 424. The magnitude of changes to a
numerical value of the code data 406 can correspond to a
difference between an 1nitial numerical value and a modified
numerical value. The magnitude of changes to the numerical
values of the code data 406 that produce the first modified
code data 420 can be different from the magnitude of
changes to the numerical values of the code data 406 used
to produce the second modified code data 422 and can be
different from the magnitude of changes to the numerical
values of the code data 406 that produce the Nth modified
code data 424. Additionally, the magmitude of changes to the
numerical values of the code data 406 to produce the second
modified code data 422 can be different from the magnmitude
of changes to the numerical values of the code data 406 to
produce the Nth modified code data 424. The magmtude of
changes to numerical values of the code data 406 can
correspond to at least one of a sum of magnitude changes to
numerical values of the code data 406, an absolute value of
the sum of magnitude changes to numerical values of the
code data 406, an average value of magnitude changes to
numerical values of the code data 406, or magnitude changes

to one or more 1ndividual numerical values of the code data
406.

[0069] The vanant sequence data 418 generated by the
decoding component 408 can include a first variant protein
sequence 426, a second variant protein sequence 428, up to
an Nth variant protein sequence 430. The decoding compo-
nent 408 can generate the first variant protein sequence 426
based on the first modified code data 420 and the decoding
component 408 can generate the second variant protein
sequence 428 based on the second modified code data 422.
In addition, the decoding component 408 can generate the
Nth variant protein sequence 430 based on the Nth modified
code data 424. The first variant protein sequence 426 can
include a first number of diflerences between initial amino
acids located at one or more first positions of the base
protein sequence 416 and first modified amino acids located
at the one or more first positions of the first variant protein
sequence 426. The second variant protein sequence 428 can
include a second number of differences between initial
amino acids located at one or more second positions of the
base protein sequence 416 and second modified amino acids
located at the one or more second positions of the second
variant protein sequence 428. In addition, the Nth variant
protein sequence 430 can include a third number of differ-
ences between initial amino acids located at one or more
third positions of the base protein sequence 416 and third
modified amino acids located at the one or more third
positions of the Nth variant protein sequence 430.

[0070] The differences between the base protein sequence
416 and the first variant protein sequence 426 can be based
on differences between the code data 406 and the first
modified code data 420. Additionally, differences between
the base protein sequence 416 and the second variant protein
sequence 428 can be based on differences between the code
data 406 and the second modified code data 422. Further,
differences between the base protein sequence 416 and the
Nth variant protein sequence 430 can be based on differ-
ences between the code data 406 and the Nth modified code
data 424. In one or more examples, a first amount of
differences between numerical values of the code data 406
and the first modified code data 420 can correspond to first
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differences of amino acids at a first number of positions of
the base protein sequence 416 1n relation to amino acids at
the first number of positions of the first variant protein
sequence 426. In one or more additional examples, a second
amount of differences between numerical values of the code
data 406 and the second modified code data 422 can corre-
spond to second differences of amino acids at a second
number of positions of the base protein sequence 416 in
relation to amino acids at the second number of positions of
the second variant protein sequence 428. In one or more
illustrative examples, the first amount of diflerences
between the numerical values of the code data 406 and the

first modified code data 420 can be greater than the second
amount of differences between the numerical values of the
code data 406 and the second modified code data 422. In
these scenarios, the first differences of amino acids at the
first number of positions of the base protein sequence 416 1n
relation to the amino acids at the first number of positions of
the first variant protein sequence 426 can be greater than the
second differences of amino acids at the second number of
positions of the base protein sequence 416 1n relation to the
amino acids at the second number of positions of the second
variant protein sequence 428. The first amount of differences
between the code data 406 and the first modified code data
420 can be greater than the second amount of differences
between the code data 406 and the second modified code
data 422 based on a number of numerical values of the code
data 406 that have been changed with respect to the first
modified code data 420 and the second modified code data
422 and/or a magnitude of changes to one or more numerical
values of the code data 406 with respect to the first modified
code data 420 and the second modified code data 422.

[0071] Inone or more examples, the base protein sequence
416 and the variant protein sequences 426, 428, 430 can
include at least a portion of an amino acid sequence of a base
protein. In one or more illustrative examples, the base
protein sequence 416 and the variant protein sequences 426,
428, 430 can include an amino acid sequence of at least a
portion of an antibody. For example, the base protein
sequence 416 and the vanant protein sequences 426, 428,
430 can include at least a portion of a heavy chain of an
antibody or at least a portion of a light chain of an antibody.
In one or more additional examples, the base protein
sequence 416 and the variant protein sequences 426, 428,
430 can include at least a portion of a variable region of a
light chain or at least a portion of a variable region of a
heavy chain of an antibody. The base protein sequence 416
and the variant protein sequences 426, 428, 430 can also
include at least a portion of a constant region of a light chain
or at least a portion of a constant region of a heavy chain of
an antibody. In one or more further illustrative examples, the
base protein sequence 416 and the variant protein sequences
426, 428, 430 can include at least a portion of a comple-
mentanty determining region (CDR) of an antibody. In
situations where the base protein sequence 416 and the
variant protein sequences 426, 428, 430 include a portion of
a sequence of a protein, additional amino acids can subse-
quently be added to the variant protein sequences 426, 428,
430. To illustrate, 1n scenarios where the variant protein
sequences 426, 428, 430 are amino acid sequences of at least
a portion of a CDR of an antibody, additional amino acids
can be added to the variant protein sequences 426, 428, 430
to produce one or more portions of an antibody sequence,
such as a heavy chain or a light chain of an antibody, or to
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produce a greater amount of antibody sequences that include
one or more heavy chains, one or more light chains, and one
or more hinge regions.

[0072] FIGS. 5 and 6 1illustrate example processes for
generating amino acid sequences of proteins using machine
learning techmiques. The example processes are illustrated
as collections of blocks in logical flow graphs, which
represent sequences of operations that can be implemented
in hardware, software, or a combination thereof. The blocks
are referenced by numbers. In the context of software, the
blocks represent computer-executable mstructions stored on
one or more computer-readable media that, when executed
by one or more processing units (such as hardware micro-
processors), perform the recited operations. Generally, com-
puter-executable structions include routines, programs,
objects, components, data structures, and the like that per-
form particular functions or implement particular data types.
The order in which the operations are described 1s not
intended to be construed as a limitation, and any number of
the described blocks can be combined 1n any order and/or 1n
parallel to implement the process.

[0073] FIG. 5 1s a flow diagram 1llustrating an example
process 500 to modily code data produced by an encoding
component of an autoencoder to produce amino acid
sequences of variants ol a base protein using one or more
components of a generative adversarial network as a decod-
ing component of the autoencoder, 1n accordance with some
implementations. The process 500 can include, at 502,
generating code data by an encoding component of an
autoencoder that represents a first amino acid sequence of a
base protein. The code data can correspond to a represen-
tation of the first amino acid sequence. In one or more
examples, the code data can include a plurality of numerical
values. In one or more illustrative examples, the code data
can include a 1x296 matnx.

[0074] In addition, the process 500 can include, at 504,
moditying the code data to produce modified code data. The
code data can be modified by modilying one or more
numerical values of the code data. In various examples, the
numerical values of the code data can be modified by
changing by increasing or decreasing a respective numerical
value by an amount. At 506, the process 500 can include
providing the modified code data to a decoding component
of the autoencoder. The decoding component can include a
generating component of a generative adversarial network.

[0075] Further, at 508, the process 500 can include gen-
crating, using the generating component, a second amino
acid sequence of a variant protein based on the modified
code data. In one or more examples, the second amino acid
sequence of the variant protein can include a same number
of amino acids as the first amino acid sequence of the base
protein and have one or more modifications of an amino acid
at one or more positions with respect to the amino acids of
the first sequence of the base protein at the same one or more
positions. In one or more additional examples, the second
amino acid sequence of the variant protein can have a
different number of amino acids than the first amino acid
sequence of the base protein. In various examples, the
second amino acid sequence of the variant protein can have
at least a threshold amount of sequence 1dentity with the first
amino acid sequence of the base protein. The amount of
differences between the first amino acid sequence of the base
protein and the second amino acid sequence of the variant
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protein can be based on a number of modifications made to
the modified code data with respect to the code data.

[0076] In one or more examples, an 1mitial version of the
generating component can be previously trained to generate
amino acid sequences of proteins that have one or more
structural features of interest and/or one or more biophysical
properties of interest. In these scenarios, the generating
component can be previously trained to produce amino acid
sequences having a first amount of amino acid sequences
that correspond to proteins having the one or more structural
features of interest and/or the one or more biophysical
properties of interest. The generating component can be
turther trained using different training data to produce amino
acid sequences having a second amount of amino acid
sequences that correspond to proteins having the one or
more structural features of interest and/or the one or more
biophysical properties of interest. Accordingly, the version
of the generating component that has been further trained
using different training data can produce a number of amino
acid sequences that has a greater proportion of amino acid
sequences ol proteins that correspond to the one or more
structural features of interest and/or the one or more bio-
physical properties of interest than the proteins correspond-
ing to the amino acid sequences produced by the previous
version of the generating component. In various examples,
the probability that the further trained version of the gener-
ating component generates amino acid sequences of proteins
having the one or more structural features of interest and/or
the one or more biophysical properties of interest can be
greater than a probability that the mmitial version of the
generating component can generate amino acid sequences of
proteins having the one or more structural features of

interest and/or the one or more biophysical properties of
interest.

[0077] Additionally, an autoencoder that includes a further
trained version of the generating component can have a
greater probability of producing amino acid sequences hav-
ing the one or more structural features of interest and/or the
one or more biophysical properties of interest than an
autoencoder that includes an 1nitial version of the generating
component. In one or more examples, an autoencoder that
includes a further trained version of the generating compo-
nent can produce a higher proportion of amino acid
sequences corresponding to proteins having the one or more
structural features of interest and/or the one or more bio-
physical properties of interest than an autoencoder that
includes an 1nitial version of the generating component.

[0078] FIG. 6 1s a flow diagram 1llustrating an example
process 600 to generate an autoencoder that produces amino
acid sequences of variants using one or more components of
a generative adversarial network as a decoding component
of the autoencoder, in accordance with some 1mplementa-
tions. At 602, the process 600 can include performing a first
training process using a first training dataset including a first
plurality of amino acids sequences of proteins to produce a
trained generating component of a generative adversarial
network. The first training process can produce a trained
generating component that produces amino acid sequences
ol proteins having a first group of one or more structural
features and/or a first group of one or more biophysical
properties. The first group of one or more structural features
and/or the first group of one or more biophysical properties
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can correspond to characteristics of the proteins associated
with the plurality of first amino acid sequences included in
the first training dataset.

[0079] The process 600 can also include, at 604, produc-
ing a second training dataset that includes a second plurality
of amino acid sequences ol proteins. In one or more
examples, the second training dataset can be produced using
the trained generating component. In addition, at 606, the
process 600 can include generating an autoencoder that
includes an encoding component and a decoding compo-
nent. The decoding component can comprise the trained
generating component of the generative adversarial network.
At 608, the process 600 can include performing a second
training process using the second training dataset to generate
a trained version of the autoencoder. The trained version of
the autoencoder can 1nclude a trained version of the encod-
ing component and the decoding component of the trained
version of the autoencoder can include the trained generat-
ing component. During the training process, the computa-
tional layers of the encoding component can be modified
based on differences between the amino acid sequences
included 1n the second training dataset and the amino acid
sequences produced by the decoding component. The dif-
ferences between the amino acid sequences included 1n the
second training dataset and the amino acid sequences pro-
duced by the decoding component can correspond to a
measure ol i1dentity between the amino acid sequences
included 1n the second training dataset 1n relation to respec-
tive amino acid sequences produced by the decoding com-
ponent. In various examples, the computational layers of the
decoding component can be held constant during the second
training process. The encoding component of the trained
version of the autoencoder can produce code data based on
input obtained by the encoding component. The code data
can include a representation of the mput obtained by the
encoding component. In addition, the decoding component
can produce output based on the code data.

[0080] Further, at 610, the process 600 can include pro-
viding base sequence data to the trained version of the
autoencoder that corresponds to an amino acid sequence of
a base protein. The encoding component of the trained
autoencoder can generate code data based on the base
sequence data that corresponds to a representation of the
base sequence data. For example, the code data can include
a compressed version of the base sequence data. In one or
more examples, the code data can include one or more
numerical values. The process 600 can include, at 612,
generating an amino acid sequence of a variant protein based
on the amino acid sequence of the base protein. In one or
more examples, the decoding component can generate the
amino acid sequence of the variant protein based on code
data generated by the encoding component based on the
amino acid sequence of the base protein. The amino acid
sequence of the variant protein can have an amount of
similarity with respect to the amino acid sequence of the
base protein and an amount of difference with respect to the
amino acid sequence of the base protein.

[0081] In one or more illustrative examples, the code data
generated by the encoding component can be modified and
the decoding component can produce the amino acid
sequence of the variant protein based on the modified code
data. In various examples, the code data can be modified by
changing one or more numerical values of the code data
from an 1nitial value to a modified value. In one or more




US 2023/0335222 Al

.

implementations, an amount of difference between the
amino acid sequence of the base protein and the amino acid
sequence of the variant protein can correspond to an extent
of changes to the numerical values of the code data. The
extent of changes to the numerical values of the code data
can correspond to a number of the numerical values of the
initial version of the code data that are modified with respect
to a modified version of the code data. The extent of changes
to the numerical values of the code data can also correspond
to the magnitude of changes to the numerical values of the
initial version of the code data with respect to the modified
version of the code data.

[0082] In one or more additional examples, the amino acid
sequences ol a number of variant proteins can be produced
using the same numerical values of the code data. For
example, a first amino acid sequence of a first variant protein
can be produced by the trained version of the autoencoder
based on numerical values of the code data and a second
amino acid sequence of a second variant protein can be
produced by the trained version of the autoencoder based on
the same numerical values of the code data. In these sce-
narios, the trained version of the autoencoder can be pro-
duced by providing a training dataset of amino acid
sequences to the encoding component that are unable to be
reproduced to a threshold amount of sequence 1dentity by
the decoding component based on code data generated by
the encoding component according to the amino acid
sequences of the training dataset. In one or more 1llustrative
examples, the threshold amount of sequence 1dentity 1n these
istances can be at least 95%, at least 97%, at least 98%, at
least 99%, or at least 99.5%.

[0083] FIG. 7 illustrates a diagrammatic representation of
a machine 700 in the form of a computer system within
which a set of instructions may be executed for causing the
machine 700 to perform any one or more of the method-
ologies discussed herein, according to an example, accord-
ing to an example embodiment. Specifically, FIG. 7 shows
a diagrammatic representation of the machine 700 in the
example form of a computer system, within which 1nstruc-
tions 702 (e.g., software, a program, an application, an
applet, an app, or other executable code) for causing the
machine 700 to perform any one or more of the method-
ologies discussed herein may be executed. For example, the
istructions 702 may cause the machine 700 to implement
the frameworks 100, 200, 300, 400, described with respect
to FIGS. 1, 2, 3, and 4, respectively, and to execute the

methods 500, 600 described with respect to FIGS. 5 and 6,
respectively.

[0084] The mstructions 702 transform the general, non-
programmed machine 700 mnto a particular machine 700
programmed to carry out the described and 1illustrated func-
tions 1n the manner described. In alternative embodiments,
the machine 700 operates as a standalone device or may be
coupled (e.g., networked) to other machines. In a networked
deployment, the machine 700 may operate 1n the capacity of
a server machine or a client machine in a server-client
network environment, or as a peer machine in a peer-to-peer
(or distributed) network environment. The machine 700 may
comprise, but not be limited to, a server computer, a client
computer, a personal computer (PC), a tablet computer, a
laptop computer, a netbook, a set-top box (STB), a personal
digital assistant (PDA), an entertainment media system, a
cellular telephone, a smart phone, a mobile device, a wear-
able device (e.g., a smart watch), a smart home device (e.g.,

Oct. 19, 2023

a smart appliance), other smart devices, a web appliance, a
network router, a network switch, a network bridge, or any
machine capable of executing the instructions 702, sequen-
tially or otherwise, that specily actions to be taken by the
machine 700. Further, while only a single machine 700 1s
illustrated, the term “machine” shall also be taken to include
a collection of machines 700 that individually or jointly
execute the mstructions 702 to perform any one or more of
the methodologies discussed herein.

[0085] Examples of machine 700 can include logic, one or
more components, circuits (e.g., modules), or mechanisms.
Circuits are tangible entities configured to perform certain
operations. In an example, circuits can be arranged (e.g.,
internally or with respect to external entities such as other
circuits) 1n a specified manner. In an example, one or more
computer systems (e.g., a standalone, client or server com-
puter system) or one or more hardware processors (proces-
sors) can be configured by software (e.g., instructions, an
application portion, or an application) as a circuit that
operates to perform certain operations as described herein.
In an example, the software can reside (1) on a non-
transitory machine readable medium or (2) in a transmission
signal. In an example, the software, when executed by the
underlying hardware of the circuit, causes the circuit to
perform the certain operations.

[0086] In an example, a circuit can be implemented
mechanically or electronically. For example, a circuit can
comprise dedicated circuitry or logic that i1s specifically
configured to perform one or more techniques such as
discussed above, such as including a special-purpose pro-
cessor, a field programmable gate array (FPGA) or an
application-specific integrated circuit (ASIC). In an
example, a circuit can comprise programmable logic (e.g.,
circuitry, as encompassed within a general-purpose proces-
sor or other programmable processor) that can be temporar-
i1ly configured (e.g., by software) to perform the certain
operations. It will be appreciated that the decision to imple-
ment a circuit mechanically (e.g., in dedicated and perma-
nently configured circuitry), or in temporarily configured
circuitry (e.g., configured by software) can be driven by cost
and time considerations.

[0087] Accordingly, the term “circuit” 1s understood to
encompass a tangible entity, be that an entity that 1s physi-
cally constructed, permanently configured (e.g., hardwired),
or temporarily (e.g., transitorily) configured (e.g., pro-
grammed) to operate 1n a specified manner or to perform
specified operations. In an example, given a plurality of
temporarily configured circuits, each of the circuits need not
be configured or mstantiated at any one instance 1n time. For
example, where the circuits comprise a general-purpose
processor configured via software, the general-purpose pro-
cessor can be configured as respective different circuits at
different times. Software can accordingly configure a pro-
cessor, for example, to constitute a particular circuit at one
instance of time and to constitute a different circuit at a
different instance of time.

[0088] In an example, circuits can provide information to,
and recerve information from, other circuits. In this example,
the circuits can be regarded as being commumnicatively
coupled to one or more other circuits. Where multiple of
such circuits exist contemporaneously, communications can
be achieved through signal transmission (e.g., over appro-
priate circuits and buses) that connect the circuits. In
embodiments in which multiple circuits are configured or
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instantiated at different times, communications between
such circuits can be achieved, for example, through the
storage and retrieval of information 1n memory structures to
which the multiple circuits have access. For example, one
circuit can perform an operation and store the output of that
operation 1n a memory device to which i1t 1s communica-
tively coupled. A further circuit can then, at a later time,
access the memory device to retrieve and process the stored
output. In an example, circuits can be configured to initiate
Or receive communications with input or output devices and
can operate on a resource (e.g., a collection of information).
[0089] The wvarious operations of method examples
described herein can be performed, at least partially, by one
or more processors that are temporarily configured (e.g., by
soltware) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors can constitute processor-implemented cir-
cuits that operate to perform one or more operations or
functions. In an example, the circuits referred to herein can
comprise processor-implemented circuits.

[0090] Similarly, the methods described herein can be at
least partially processor implemented. For example, at least
some of the operations of a method can be performed by one
or processors or processor-implemented circuits. The per-
formance of certain of the operations can be distributed
among the one or more processors, not only residing within
a single machine, but deployed across a number of
machines. In an example, the processor or processors can be
located 1n a single location (e.g., within a home environ-
ment, an oflice environment or as a server farm), while 1n
other examples the processors can be distributed across a
number of locations.

[0091] The one or more processors can also operate to
support performance of the relevant operations 1n a “cloud
computing”’ environment or as a “soltware as a service”

[0092] (SaaS). For example, at least some of the opera-
tions can be performed by a group of computers (as
examples of machines including processors), with these
operations being accessible via a network (e.g., the Internet)
and via one or more appropriate interfaces (e.g., Application

Program Interfaces (APIs).)

[0093] Example embodiments (e.g., apparatus, systems, or
methods) can be implemented 1n digital electronic circuitry,
in computer hardware, in firmware, 1n soltware, or in any
combination thereol. Example embodiments can be imple-
mented using a computer program product (e.g., a computer
program, tangibly embodied 1n an information carrier or in
a machine readable medium, for execution by, or to control
the operation of, data processing apparatus such as a pro-
grammable processor, a computer, or multiple computers).

[0094] A computer program can be written 1n any form of
programming language, including compiled or interpreted
languages, and it can be deployed 1n any form, including as
a stand-alone program or as a software module, subroutine,
or other unit suitable for use 1n a computing environment. A
computer program can be deployed to be executed on one
computer or on multiple computers at one site or distributed
across multiple sites and interconnected by a communication
network.

[0095] In an example, operations can be performed by one
or more programmable processors executing a computer
program to perform functions by operating on input data and
generating output. Examples of method operations can also
be performed by, and example apparatus can be 1mple-
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mented as, special purpose logic circuitry (e.g., a field
programmable gate array (FPGA) or an application-specific
integrated circuit (ASIC)).

[0096] The computing system can include clients and
servers. A client and server are generally remote from each
other and generally interact through a communication net-
work. The relationship of client and server arises by virtue
ol computer programs running on the respective computers
and having a client-server relationship to each other. In
embodiments deploying a programmable computing system,
it will be appreciated that both hardware and software
architectures require consideration. Specifically, 1t will be
appreciated that the choice of whether to implement certain
functionality 1n permanently configured hardware (e.g., an
ASIC), 1 temporarily configured hardware (e.g., a combi-
nation ol software and a programmable processor), or a
combination of permanently and temporarily configured
hardware can be a design choice. Below are set out hardware
(e.g., machine 700) and software architectures that can be
deployed in example embodiments.

[0097] In an example, the machine 700 can operate as a
standalone device or the machine 700 can be connected
(e.g., networked) to other machines.

[0098] In a networked deployment, the machine 700 can
operate 1n the capacity of either a server or a client machine
in server-client network environments. In an example,
machine 700 can act as a peer machine 1n peer-to-peer (or
other distributed) network environments. The machine 700
can be a personal computer (PC), a tablet PC, a set-top box
(STB), a Personal Digital Assistant (PDA), a mobile tele-
phone, a web appliance, a network router, switch or bridge,
or any machine capable of executing instructions (sequential
or otherwise) specilying actions to be taken (e.g., per-
formed) by the machine 700. Further, while only a single
machine 700 1s illustrated, the term “computing device”
shall also be taken to include any collection of machines that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methodolo-
gies discussed herein.

[0099] Example machine 700 can include a processor 704
(e.g., a central processing unit CPU), a graphics processing,
umit (GPU) or both), a main memory 706 and a static
memory 708, some or all of which can communicate with
cach other via a bus 710. The machine 700 can further
include a display unit 712, an alphanumeric input device 714
(e.g., a keyboard), and a user interface (UI) navigation
device 716 (e.g., a mouse). In an example, the display unit
712, input device 714 and UI navigation device 716 can be
a touch screen display. The machine 700 can additionally
include a storage device (e.g., drive unit) 718, a signal
generation device 720 (e.g., a speaker), a network interface
device 722, and one or more sensors 724, such as a global
positioning system (GPS) sensor, compass, accelerometer,
or another sensor.

[0100] The storage device 718 can include a machine
readable medium 726 on which 1s stored one or more sets of
data structures or instructions 702 (e.g., software) embody-
ing or utilized by any one or more of the methodologies or
functions described herein. The instructions 702 can also
reside, completely or at least partially, within the main
memory 706, within static memory 708, or within the
processor 704 during execution thereof by the machine 700.
In an example, one or any combination of the processor 704,
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the main memory 706, the static memory 708, or the storage
device 718 can constitute machine readable media.

[0101] Whuile the machine readable medium 726 1s 1llus-
trated as a single medium, the term “machine readable
medium”™ can include a single medium or multiple media
(e.g., a centralized or distributed database, and/or associated
caches and servers) that configured to store the one or more
istructions 702. The term “machine readable medium”™ can
also be taken to include any tangible medium that 1s capable
ol storing, encoding, or carrying instructions for execution
by the machine and that cause the machine to perform any
one or more of the methodologies of the present disclosure
or that 1s capable of storing, encoding or carrying data
structures utilized by or associated with such instructions.
The term “machine readable medium™ can accordingly be
taken to include, but not be limited to, solid-state memories,
and optical and magnetic media. Specific examples of
machine-readable media can include non-volatile memory,
including, by way of example, semiconductor memory
devices (e.g., Electrically Programmable Read-Only
Memory

[0102] (EPROM), Electrically Erasable Programmable
Read-Only Memory (EEPROM)) and flash memory
devices; magnetic disks such as internal hard disks and

removable disks; magneto-optical disks; and CD-ROM and
DVD-ROM disks.

[0103] The instructions 702 can further be transmitted or
received over a communications network 728 using a trans-
mission medium via the network interface device 722 uti-
lizing any one of a number of transfer protocols (e.g., frame
relay, 1P, TCP, UDP, HT'TP, etc.). Example communication
networks can include a local area network (LAN), a wide
area network (WAN), a packet data network (e.g., the
Internet), mobile telephone networks (e.g., cellular net-
works), Plain Old Telephone (POTS) networks, and wireless
data networks (e.g., IEEE 802.11 standards family known as
Wi-Fi®, IEEE 802.16 standards family known as WiMax®),
peer-to-peer (P2P) networks, among others. The term ““trans-
mission medium™ shall be taken to include any intangible
medium that 1s capable of storing, encoding or carrying
instructions for execution by the machine, and includes
digital or analog communications signals or other intangible
medium to facilitate communication of such software.

[0104] As used heremn, a “component” 1n this context,
refers to at least one of a device, physical entity, group of
computer-readable instructions, or logic having boundaries
defined by function or subroutine calls, branch points, APIs,
or other technologies that provide for the partitioning or
modularization of particular processing or control functions.
Components may be combined via their interfaces with
other components to carry out a machine process. A com-
ponent may be a packaged functional hardware unit
designed for use with other components and a part of a
program that usually performs a particular function of
related functions. Components may constitute either soft-
ware components (e.g., code embodied on a machine-read-
able medium) or hardware components. A “hardware com-
ponent” 1s a tangible unit capable of performing certain
operations and may be configured or arranged 1n a certain
physical manner. In various example implementations, one
or more computer systems (e.g., a standalone computer
system, a client computer system, or a server computer
system) or one or more hardware components of a computer
system (e.g., a processor or a group ol processors) may be
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configured by software (e.g., an application or application
portion) as a hardware component that operates to perform
certain operations as described herein.

[0105] A numbered non-limiting list of aspects of the
present subject matter 1s presented below.

[0106] Aspect 1. A method comprising: performing, by a
computing system including one or more computing devices
having one or more processors and memory, a first traiming
process using a first training dataset to produce a trained
generating component of a generative adversarial network,
the first training dataset including a first plurality of amino
acid sequences of first proteins; producing, by the comput-
ing system, a second training dataset including a second
plurality of amino acid sequences of second proteins, gen-
erating, by the computing system, an autoencoder that
includes an encoding component and a decoding compo-
nent, the decoding component comprising the trained gen-
erating component of the generative adversarial network;
performing, by the computing system, a second training
process using the second training dataset to generate a
trained version of the autoencoder, the trained version of the
autoencoder including a tramned version of the encoding
component that generates code data, the code data repre-
senting one or more amino acid sequences ol the second
training dataset; providing, by the computing system, base
sequence data to the trained version of the autoencoder, the
base sequence data including a first amino acid sequence of
a base protein; and generating, by the computing system,
variant sequence data that includes a second amino acid
sequence of a variant protein based on the code data, the
second amino acid sequence having an amount of similarity
with the respect to the first amino acid sequence and an
amount of difference with respect to the first amino acid
sequence.

[0107] Aspect 2. The method of aspect 1, further com-
prising: modifying, by the computing system, the code data
to produce modified code data, wherein the modified code
data 1s used by the decoding component to generate the
second amino acid sequence.

[0108] Aspect 3. The method of aspect 1 or 2, wherein the
second amino acid sequence has at least a threshold amount
of 1dentity with respect to the first amino acid sequence.

[0109] Aspect 4. The method of any one of aspects 1-3,
wherein the second training dataset 1s produced by the
trained generating component.

[0110] Aspect 5. The method of claim any one of aspects
1-4, further comprising: determining, by the computing
system and during the first training process, code data by the
encoding component of the autoencoder based on an amino
acid sequence of the first training dataset obtained by the
encoding component; generating, by the computing system
and during the first training process, an additional amino
acid sequence by the decoding component; determining, by
the computing system and during the first training process,
a measure of differences between the amino acid sequence
and the additional amino acid sequence; and modifying, by
the computing system and during the first training process,
one or more computational layers of the encoding compo-
nent based on the measure of differences between the amino
acid sequence and the additional amino acid sequence.

[0111] Aspect 6. The method of any one of aspects 1-5,
wherein first computational layers of the decoding compo-
nent are unchanged during the first training process and
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second computational layers of the encoding component are
modified during the first training process.

[0112] Aspect 7. The method of any one of aspects 1-6,
turther comprising: obtaining, by the computing system, a
third training dataset that includes a third plurality of amino
acid sequences of third proteins, the third proteins including
a greater number of proteins having at least one of a
structural feature or a biophysical property than the first
plurality of first proteins included 1n the first training dataset;
performing, by the computing system, a third training pro-
cess for a generative adversarial network that includes the
trained generating component; and producing, by the com-
puting system, an additional trained generating component
in relation to the third training process using the third
training dataset, the additional trained generating component
generating a plurality of amino acid sequences of a first
group ol proteins having a greater proportion of proteins
including at least one of the structural feature or the bio-
physical property than a second group of proteins corre-
sponding to additional amino acid sequences generated by
the trained generating component.

[0113] Aspect 8. The method of aspect 7, further compris-
ing: generating, by the computing system, and additional
autoencoder that includes the trained version of the encoding
component and an additional decoding component that
includes the additional trained generating component; and
performing, by the computing system, a fourth training
process to generate an additional trained version of the
autoencoder including an additional trained version of the
encoding component using a fourth training dataset that
includes a fourth plurality of amino acid sequences of fourth
proteins.

[0114] Aspect 9. The method of aspect 8, further compris-
ing: providing, by the computing system, additional base
sequence data to the additional trained version of the encod-
ing component, the additional base sequence data corre-
sponding to an additional amino acid sequence of an addi-
tional base protein; generating, by the computing system and
using the additional trained version of the encoding com-
ponent, additional code data based on the additional base
sequence data; and generating, by the computing system and
using the additional decoding component, additional variant
sequence data that includes a plurality of additional amino
acid sequences that correspond to a plurality of additional
variant proteins of the additional base protein, the plurality
of additional variant proteins having at least a threshold
probability of including at least one of the structural feature
or the biophysical property.

[0115] Aspect 10. The method of any one of aspects 1-9,
wherein the base protein includes at least a portion of an
antibody.

[0116] Aspect 11. The method of any one of aspects 1-10,
wherein: the variant sequence data includes a plurality of
additional amino acid sequences of a plurality of additional
proteins, individual additional amino acid sequences of the
plurality of additional amino acid sequences having at least
an additional amount of similarity with respect to the first
amino acid sequence and an additional amount of difference
with respect to the first amino acid sequence; and the method
turther comprising: generating, by the computing system, a
first additional amino acid sequence of the plurality of
additional amino acid sequences using numerical values of
the code data; and generating, by the computing system, a
second additional amino acid sequence of the plurality of
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additional amino acid sequences using the numerical values
of the code data, the second additional amino acid sequence
being different from the first additional amino acid sequence.

[0117] Aspect 12. A computing system comprising: one or
more hardware processors; and one or more non-transitory
computer readable media storing computer-executable
instructions that, when executed by the one or more hard-
ware processors, cause the one or more processor to perform
operations comprising: performing a first training process
using a first training dataset to produce a trained generating
component of a generative adversarial network, the first
training dataset including a first plurality of amino acid
sequences ol first proteins; producing a second training
dataset including a second plurality of amino acid sequences
of second proteins, generating an autoencoder that includes
an encoding component and a decoding component, the
decoding component comprising the traimned generating
component of the generative adversarial network; performs-
ing a second training process using the second training data
set to generate a trained version of the autoencoder, the
trained version of the autoencoder including a trained ver-
s1on of the encoding component that generates code data, the
code data representing one or more amino acid sequences of
the second traiming dataset; providing base sequence data to
the trained version of the autoencoder, the base sequence
data including a first amino acid sequence of a base protein;
and generating, by the computing system, variant sequence
data that includes a second amino acid sequence of a variant
protein based on the code data, the second amino acid
sequence having an amount of similarity with the respect to
the first amino acid sequence and an amount of difference
with respect to the first amino acid sequence.

[0118] Aspect 13. The computing system of aspect 12,
wherein the one or more non-transitory computer readable
media store additional computer-executable instructions
that, when executed by the one or more hardware proces-
sors, cause the one or more processor to perform additional
operations comprising: modiiying the code data to produce
modified code data, wherein the modified code data 1s used
by the decoding component to generate the second amino
acid sequence.

[0119] Aspect 14. The computing system of aspect 12 or
13, wherein the second amino acid sequence has at least a
threshold amount of identity with respect to the first amino
acid sequence.

[0120] Aspect 15. The computing system of any one of
aspects 12-14, wherein the second training dataset 1s pro-
duced by the trained generating component.

[0121] Aspect 16. The computing system of any one of
aspects 12-15, wheremn the one or more non-transitory
computer readable media store additional computer-execut-
able instructions that, when executed by the one or more
hardware processors, cause the one or more processor 1o
perform additional operations comprising: determining, dur-
ing the first training process, code data by the encoding
component of the autoencoder based on an amino acid
sequence of the first training dataset obtained by the encod-
ing component; generating, during the first traiming process,
an additional amino acid sequence by the decoding compo-
nent; determining, by the computing system and during the
first training process, a measure of differences between the
amino acid sequence and the additional amino acid
sequence; and modifying, during the first training process,
one or more computational layers of the encoding compo-
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nent based on the measure of difterences between the amino
acid sequence and the additional amino acid sequence.

[0122] Aspect 17. The computing system of any one of
aspects 12-16, wherein first computational layers of the
decoding component are unchanged during the first training
process and second computational layers of the encoding
component are modified during the first training process.

[0123] Aspect 18. The computing system of any one of
aspects 12-17, wheremn the one or more non-transitory
computer readable media store additional computer-execut-
able instructions that, when executed by the one or more
hardware processors, cause the one or more processor to

perform additional operations comprising: obtaining a third
training dataset that includes a third plurality of amino acid
sequences of third proteins, the third proteins including a
greater number of proteins having at least one of a structural
feature or a biophysical property than the first plurality of
first proteins included 1n the first training dataset; performs-
ing a third training process for a generative adversarial
network that includes the trained generating component; and
producing an additional trained generating component in
relation to the third tramning process using the third training,
dataset, the additional trained generating component gener-
ating a plurality of amino acid sequences of a first group of
proteins having a greater proportion of proteins including at
least one of the structural feature or the biophysical property
than a second group of proteins corresponding to additional
amino acid sequences generated by the trained generating
component.

[0124] Aspect 19. The computing system of aspect 18,
wherein the one or more non-transitory computer readable
media store additional computer-executable instructions
that, when executed by the one or more hardware proces-
sors, cause the one or more processor to perform additional
operations comprising: generating an additional autoencoder
that includes the trained version of the encoding component
and an additional decoding component that includes the
additional trained generating component; and performing a
fourth training process to generate an additional trained
version of the autoencoder imncluding an additional tramned
version of the encoding component using a fourth traiming,
dataset that includes a fourth plurality of amino acid
sequences of fourth proteins.

[0125] Aspect 20. The method of aspect 19, wherein the

one or more non-transitory computer readable media store
additional computer-executable instructions that, when
executed by the one or more hardware processors, cause the
one or more processor to perform additional operations
comprising: providing additional base sequence data to the
additional trained version of the encoding component, the
additional base sequence data corresponding to an additional
amino acid sequence of an additional base protein; gener-
ating, using the additional trained version of the encoding
component, additional code data based on the additional
base sequence data; and generating, using the additional
decoding component, additional variant sequence data that
includes a plurality of additional amino acid sequences that
correspond to a plurality of additional variant proteins of the
additional base protein, the plurality of additional variant
proteins having at least a threshold probability of including
at least one of the structural feature or the biophysical

property.
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[0126] Aspect 21. The computing system of any one of
aspects 12-20, wherein the base protein includes at least a
portion ol an antibody.

[0127] Aspect 22. The computing system of any one of
aspects 12-21, wherein: the variant sequence data includes a
plurality of additional amino acid sequences of a plurality of
additional proteins, individual additional amino acid
sequences of the plurality of additional amino acid
sequences having at least an additional amount of similarity
with respect to the first amino acid sequence and an addi-
tional amount of difference with respect to the first amino
acid sequence; and the one or more non-transitory computer
readable media store additional computer-executable
instructions that, when executed by the one or more hard-
ware processors, cause the one or more processor to perform
additional operations comprising: generating a first addi-
tional amino acid sequence of the plurality of additional
amino acid sequences using numerical values of the code
data; and generating, by the computing system, a second
additional amino acid sequence of the plurality of additional
amino acid sequences using the numerical values of the code
data, the second additional amino acid sequence being
different from the first additional amino acid sequence.

[0128] Aspect 23. A computing system comprising: one or
more hardware processors; and one or more non-transitory
computer readable media storing computer-executable
instructions that, when executed by the one or more hard-
ware processors, cause the one or more processor to perform
operations comprising: generating code data by an encoding
component of an autoencoder, the code data corresponding
to a representation of a first amino acid sequence of a base
protein that 1s provided as input to the encoding component;
moditying the code data to produce modified code data;
providing the modified code data to a decoding component
of the autoencoder, the decoding component including a
generating component of a generative adversarial network;
and generating, by the decoding component, a second amino
acid sequence of a variant protein based on the modified
code data, the second amino acid sequence having one or
more positions with different amino acids than one or more
corresponding positions of the first amino acid sequence of
the base protein.

[0129] Aspect 24. The computing system of aspect 23,

wherein the code data includes a plurality of numerical
values.

[0130] Aspect 25. The computing system of aspect 24,
wherein the one or more non-transitory computer readable
media storing additional computer-executable instructions
that, when executed by the one or more hardware proces-
sors, cause the one or more processor to perform additional
operations comprising: modifying one or more numerical
values of the plurality of numerical values to produce the

modified code data.

[0131] Aspect 26. The computing system of aspect 24,
wherein an extent of diflerences between the second amino
acid sequence of the variant protein and the first amino acid
sequence ol the base protein 1s based on at least one of a
number of the plurality of numerical values modified to
produce the modified code data or a magnitude of change to
individual numerical values of the one or more numerical
values.

[0132] Aspect 27. A method comprising: generating by a
computing system including one or more computing devices
having one or more processors and memory, code data by an
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encoding component of an autoencoder, the code data cor-
responding to a representation of a first amino acid sequence
of a base protein that i1s provided as input to the encoding
component; modifying, by the computing system, the code
data to produce modified code data; providing, by the
computing system, the modified code data to a decoding
component of the autoencoder, the decoding component
including a generating component of a generative adver-
sarial network; and generating, by the computing system and
using the decoding component, a second amino acid
sequence ol a variant protein based on the modified code
data, the second amino acid sequence having one or more
positions with different amino acids than one or more
corresponding positions of the first amino acid sequence of
the base protein.

[0133] Aspect 28. The method of aspect 27, wherein the
code data includes a plurality of numerical values.

[0134] Aspect 29. The method of aspect 27 or 28, com-
prising modifying, by the computing system, one or more
numerical values of the plurality of numerical values to
produce the modified code data.

[0135] Aspect 30. The method of any one of aspects
27-29, wherein an extent of differences between the second
amino acid sequence of the variant protein and the first
amino acid sequence of the base protein 1s based on at least
one of a number of the plurality of numerical values modi-
fied to produce the modified code data or a magnitude of
change to individual numerical values of the one or more
numerical values.

What 1s claimed 1s:

1. A method comprising;

performing, by a computing system including one or more
computing devices having one or more processors and
memory, a first training process using a first traiming,
dataset to produce a trained generating component of a
generative adversarial network, the first training dataset
including a first plurality of amino acid sequences of
first proteins;

producing, by the computing system, a second training
dataset including a second plurality of amino acid
sequences of second proteins,

generating, by the computing system, an autoencoder that
includes an encoding component and a decoding com-
ponent, the decoding component comprising the traimned
generating component of the generative adversarial
network:

performing, by the computing system, a second training
process using the second training dataset to generate a
trained version of the autoencoder, the trained version
of the autoencoder including a trained version of the
encoding component that generates code data, the code
data representing one or more amino acid sequences of
the second training dataset;

providing, by the computing system, base sequence data
to the tramned version of the autoencoder, the base
sequence data including a first amino acid sequence of
a base protein; and

generating, by the computing system, variant sequence
data that includes a second amino acid sequence of a
variant protein based on the code data, the second
amino acid sequence having an amount of similarity
with the respect to the first amino acid sequence and an
amount of difference with respect to the first amino acid
sequence.
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2. The method of claim 1, further comprising:

moditying, by the computing system, the code data to
produce modified code data, wherein the modified code
data 1s used by the decoding component to generate the
second amino acid sequence.

3. The method of claim 1, wherein the second amino acid
sequence has at least a threshold amount of i1dentity with
respect to the first amino acid sequence.

4. The method of claim 1, wherein the second training
dataset 1s produced by the trained generating component.

5. The method of claim 1, further comprising:

determining, by the computing system and during the first
training process, code data by the encoding component
of the autoencoder based on an amino acid sequence of
the first training dataset obtained by the encoding
component;

generating, by the computing system and during the first
training process, an additional amino acid sequence by
the decoding component;

determiming, by the computing system and during the first
training process, a measure of diflerences between the

amino acid sequence and the additional amino acid
sequence; and

moditying, by the computing system and during the first
training process, one or more computational layers of
the encoding component based on the measure of
differences between the amino acid sequence and the
additional amino acid sequence.

6. The method of claim 1, wherein first computational
layers of the decoding component are unchanged during the
first training process and second computational layers of the

encoding component are modified during the first training
process.

7. The method of claim 1, further comprising:

obtaining, by the computing system, a third training
dataset that includes a third plurality of amino acid
sequences of third proteins, the third proteins including,
a greater number of proteins having at least one of a
structural feature or a biophysical property than the first

plurality of first proteins included in the first traiming
dataset;

performing, by the computing system, a third training
process for a generative adversarnial network that
includes the trained generating component; and

producing, by the computing system, an additional trained
generating component in relation to the third training
process using the third training dataset, the additional
trained generating component generating a plurality of
amino acid sequences of a first group of proteins having,
a greater proportion of proteins including at least one of
the structural feature or the biophysical property than a
second group of proteins corresponding to additional

amino acid sequences generated by the trained gener-
ating component.

8. The method of claim 7, further comprising:

generating, by the computing system, an additional auto-
encoder that includes the trained version of the encod-
ing component and an additional decoding component
that includes the additional trained generating compo-
nent; and

performing, by the computing system, a fourth training
process to generate an additional trained version of the
autoencoder mcluding an additional trained version of
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the encoding component using a fourth training dataset
that includes a fourth plurality of amino acid sequences
of fourth proteins.

9. The method of claim 8, further comprising:

providing, by the computing system, additional base
sequence data to the additional trained version of the
encoding component, the additional base sequence data
corresponding to an additional amino acid sequence of
an additional base protein;

generating, by the computing system and using the addi-
tional tramned version of the encoding component,
additional code data based on the additional base
sequence data; and

generating, by the computing system and using the addi-
tional decoding component, additional variant
sequence data that includes a plurality of additional
amino acid sequences that correspond to a plurality of
additional variant proteins of the additional base pro-
tein, the plurality of additional variant proteins having
at least a threshold probability of including at least one
of the structural feature or the biophysical property.

10. The method of claim 1, wherein the base protein
includes at least a portion of an antibody.

11. The method of claim 1, wherein:

the variant sequence data includes a plurality of additional
amino acid sequences of a plurality of additional pro-
teins, individual additional amino acid sequences of the
plurality of additional amino acid sequences having at
least an additional amount of similarity with respect to
the first amino acid sequence and an additional amount
of difference with respect to the first amino acid
sequence; and

the method further comprising:

generating, by the computing system, a first additional
amino acid sequence of the plurality of additional
amino acid sequences using numerical values of the
code data; and

generating, by the computing system, a second additional
amino acid sequence ol the plurality of additional
amino acid sequences using the numerical values of the
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code data, the second additional amino acid sequence
being different from the first additional amino acid
sequence.

12. A computing system comprising:

one or more hardware processors; and

one or more non-transitory computer readable media

storing computer-executable instructions that, when

executed by the one or more hardware processors,

cause the one or more processor to perform operations

comprising:

generating code data by an encoding component of an
autoencoder, the code data corresponding to a rep-
resentation of a first amino acid sequence of a base
protein that i1s provided as input to the encoding
component;

moditying the code data to produce modified code data;

providing the modified code data to a decoding com-
ponent of the autoencoder, the decoding component
including a generating component of a generative
adversarial network; and

generating, by the decoding component, a second
amino acid sequence of a variant protein based on
the modified code data, the second amino acid
sequence having one or more positions with different
amino acids than one or more corresponding posi-
tions of the first amino acid sequence of the base
protein.

13. The system of claim 12, wherein the code data
includes a plurality of numerical values.

14. The system of claim 13, wherein the one or more
non-transitory computer readable media storing additional
computer-executable instructions that, when executed by the
one or more hardware processors, cause the one or more
processor to perform additional operations comprising:

moditying one or more numerical values of the plurality

of numerical values to produce the modified code data.

15. The system of claim 13, wherein an extent of differ-
ences between the second amino acid sequence of the
variant protein and the first amino acid sequence of the base
protein 1s based on at least one of a number of the plurality
of numerical values modified to produce the modified code
data or a magnitude of change to individual numerical
values of the one or more numerical values.
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