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(57) ABSTRACT

Amino acid sequences of antibodies can be generated using
a generative adversarial network that includes a first gener-
ating component that generates amino acid sequences of
antibody light chains and a second generating component
generates amino acid sequences of antibody heavy chains.
Amino acid sequences of antibodies can be produced by
combining the respective amino acid sequences produced by
the first generating component and the second generating
component. The training of the first generating component
and the second generating component can proceed at dif-
ferent rates. Additionally, the antibody amino acids pro-
duced by combining amino acid sequences from the first
generating component and the second generating component
may be evaluated according to complentarity-determining
regions of the antibody amino acid sequences. Training
datasets may be produced using amino acid sequences that
correspond to antibodies have particular binding affinities
with respect to molecules, such as binding affinity with
major histocompatibility complex (MHC) molecules.
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GENERATION OF PROTEIN SEQUENCES
USING MACHINE LEARNING TECHNIQUES

BACKGROUND

[0001] Proteins are biological molecules that are com-
prised of one or more chains of amino acids. Proteins can
have various functions within an organism. For example,
some proteins can be involved in causing a reaction to take
place within an organism. In other examples, proteins can
transport molecules throughout the organism. In still other
examples, proteins can be involved in the replication of
genes. Additionally, some proteins can have therapeutic
properties and be used to treat various biological conditions.
The structure and function of proteins are based on the
arrangement of amino acids that comprise the proteins. The
arrangement of amino acids for proteins can be represented
by a sequence of letters with each letter corresponding to an
amino acid at a certain position. The arrangement of amino
acids for proteins can also be represented by three dimen-
sional structures that not only indicate the amino acids at
certain positions of the protein, but also indicate three
dimensional features of the proteins, such as an a-helix or a
[-sheet.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] The present disclosure is illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings, in which like references indicate similar
elements.

[0003] FIG. 1 is a diagram illustrating an example frame-
work to generate protein sequences, in accordance with
some implementations.

[0004] FIG. 2 is a diagram illustrating an example frame-
work that includes an encoding component and a decoding
component to generate protein sequences, in accordance
with some implementations.

[0005] FIG. 3 is a diagram illustrating an example frame-
work including a generating component and a challenging
component to generate protein sequences, in accordance
with some implementations.

[0006] FIG. 4 is a diagram illustrating an example frame-
work to generate protein sequences using a first set of
training data that has a first set of characteristics and a
second set of training data that has a second, different set of
characteristics, in accordance with some implementations.

[0007] FIG. 5 is a diagram illustrating an example frame-
work to generate antibody sequences that are variants of a
parent antibody, in accordance with some implementations.
[0008] FIG. 6 is a diagram illustrating an example frame-
work to generate amino acid sequences of antibodies that
bind to a specified antigen, in accordance with some imple-
mentations.

[0009] FIG. 7 is a diagram illustrating an example frame-
work to generate multiple libraries of proteins and to com-
bine the protein libraries to generate additional proteins, in
accordance with some implementations.

[0010] FIG. 8 is a diagram illustrating an additional
example framework to generate amino acid sequences of
antibodies using paired amino acid sequences of antibody
heavy chains and light chains, in accordance with some
implementations.

[0011] FIG. 9 is a diagram illustrating a framework that
implements the use of transfer learning techniques to gen-
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erate paired amino acid sequences of antibodies from amino
acid sequences of antibody heavy chains and light chains, in
accordance with some implementations.

[0012] FIG. 10 is a diagram illustrating a framework for
the concatenation of amino acid sequences of antibody
heavy chains and light chains, in accordance with some
implementations.

[0013] FIG. 11 is a flow diagram illustrating an example
method for producing protein sequences, in accordance with
some implementations.

[0014] FIG. 12 is a flow diagram illustrating another
example method for producing protein sequences, in accor-
dance with some implementations.

[0015] FIG. 13 is a flow diagram illustrating an example
method to produce amino acid sequences of proteins that
bind to a specified target molecule, in accordance with some
implementations.

[0016] FIG. 14 is a flow diagram illustrating an example
method to produce amino acid sequences of antibodies by
combining amino acid sequences of antibody heavy chains
and amino acid sequences of light chains, in accordance with
some implementations.

[0017] FIG. 15 is an example of a scheme to structurally
align amino acid sequences of antibodies before encoding
the amino acid sequences of the antibodies for input to a
generative adversarial network, in accordance with some
implementations.

[0018] FIG. 16 illustrates a diagrammatic representation
of'a machine in the form of a computer system within which
a set of instructions may be executed for causing the
machine to perform any one or more of the methodologies
discussed herein, according to an example embodiment.

DETAILED DESCRIPTION

[0019] Proteins can have many beneficial uses within
organisms. In particular situations, proteins can be used to
treat diseases and other biological conditions that can det-
rimentally impact the health of humans and other mammals.
In various scenarios, proteins can participate in reactions
that are beneficial to subjects and that can counteract one or
more biological conditions being experienced by the sub-
jects. In some examples, proteins can also bind to target
molecules within an organism that may be detrimental to the
health of a subject. For these reasons, many individuals and
organizations have sought to develop proteins that may have
therapeutic benefits.

[0020] The development of proteins can be a time con-
suming and resource intensive process. Often, candidate
proteins for development can be identified as potentially
having desired biophysical properties, three-dimensional
(3D) structures, and/or behavior within an organism. In
order to determine whether the candidate proteins actually
have the desired characteristics, the proteins can be synthe-
sized and then tested to determine whether the actual char-
acteristics of the synthesized proteins correspond to the
desired characteristics. Due to the amount of resources
needed to synthesize and test proteins for specified biophysi-
cal properties, 3D structures, and/or behaviors, the number
of candidate proteins synthesized for therapeutic purposes is
limited. In some situations, the number of proteins synthe-
sized for therapeutic purposes can be limited by the loss of
resources that takes place when candidate proteins are
synthesized and do not have the desired characteristics.
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[0021] The use of computer-implemented techniques to
identify candidate proteins that have particular characteris-
tics has increased. These conventional techniques, however,
can be limited in their scope and accuracy. In various
situations, conventional computer-implemented techniques
to generate protein sequences can be limited by the amount
of data available and/or the types of data available that may
be needed by those conventional techniques to accurately
generate protein sequences with specified characteristics.
Additionally, the techniques utilized to produce models that
can generate protein sequences with particular characteris-
tics can be complex and the know-how needed to produce
models that are accurate and efficient can be complex. In
certain scenarios, the length of the protein sequences pro-
duced by conventional models can also be limited because
the accuracy of conventional techniques can decrease as the
lengths of the proteins increases. Thus, the number of
proteins generated by conventional techniques is limited.

[0022] The techniques and systems described herein can
be used to generate amino acid sequences of proteins
accurately and efficiently. In particular implementations,
generative adversarial networks can be implemented to
determine models that can produce amino acid sequences of
proteins. The generative adversarial networks can be trained
using a number of different training datasets to produce
amino acid sequences for proteins having specified charac-
teristics. For example, the generative adversarial networks
described herein can produce sequences of amino acids of
proteins having particular biophysical properties. In other
examples, the generative adversarial networks described
herein can produce sequences of amino acids having a
particular structure. Additionally, the techniques and sys-
tems described herein can utilize computer-implemented
processes that analyze the amino acid sequences generated
by the generative adversarial networks. The analysis of the
amino acid sequences can determine whether the character-
istics of the amino acid sequences produced by the genera-
tive adversarial networks correspond to a desired set of
characteristics. In particular implementations, the computer-
implemented processes can filter amino acid sequences
produced by the generative adversarial networks to identify
amino acid sequences that correspond to a specified set of
characteristics.

[0023] In further examples, one or more implementations
described herein may include an autoencoder architecture
that can generate protein sequences. In one or more
examples, a variational autoencoder can be used to generate
protein sequences. In various examples, a variational auto-
encoder can be implemented to generate amino acid
sequences of antibodies. In one or more implementations, a
generative machine learning architecture can include at least
one encoder and a decoder that optimize a loss function to
produce a model that generates amino acid sequences that
correspond to sequences of proteins. After an initial training
of the model, the model can be further modified by training
the model using data that corresponds to amino acid
sequences of proteins that have a specified set of character-
istics, such as one or more specified biophysical properties.
[0024] Additionally, the techniques and systems described
herein can be used to generate amino acid sequences of
antibodies that have at least a threshold probability of
binding to a specified antigen. In these scenarios, the amino
acid sequences can be generated based on antibody-antigen
interaction data indicating interactions between antibodies
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and antigens. For example, the antibody-antigen interaction
data can indicate antigen binding regions of antibodies and
the corresponding epitopes of the antigens that are bound to
the antigen binding regions of the antibodies.

[0025] Further, the techniques and systems described
herein can be used to produce amino acid sequences of
antibodies using amino acid sequences of antibody heavy
chains and of antibody light chains that have been generated
separately and then combined. In various implementations,
a generative adversarial network using two generating com-
ponents (one for the heavy chain amino acid sequences and
another for the light chain amino acid sequences) can be
used to separately produce heavy chain amino acid
sequences and light chain amino acid sequences that can
then be combined to generate antibody sequences that
include both heavy chains and light chains. The implemen-
tation of separate generating components to generate light
chain amino acid sequences and heavy chain amino acid
sequences improves the efficiency of the generative adver-
sarial network and minimizes the computing resources uti-
lized to generate amino acid sequences of antibodies in
relation to generative adversarial networks that implement a
single generating component to produce both the heavy
chain and light chain amino acid sequences of antibodies.
That is, fewer computing resources are utilized to produce a
number of antibody sequences from combinations of sepa-
rately generated light chains and heavy chains than the same
number of antibody sequences generated as amino acid
sequences that are initially generated with both light chains
and heavy chains. In addition, the number of overall
resources utilized to chemically synthesize a library of light
chains and a library of heavy chains that can be combined to
produce a number of antibodies based on machine generated
light chain sequences and heavy chain sequences as
described herein is lower than techniques that simply chemi-
cally synthesize antibodies already having both heavy chains
and light chains.

[0026] FIG. 1 is a diagram illustrating an example frame-
work 100 to generate protein sequences, in accordance with
some implementations. The framework 100 can include a
generative machine learning architecture 102. The genera-
tive machine learning architecture 102 can include a
sequence generating component 104. The sequence gener-
ating component 104 can implement a model to generate
amino acid sequences based on input provided to the
sequence generating component 104. For example, the
sequence generating component 104 can produce generated
sequences 106. The generated sequences 106 can include
amino acid sequences of proteins. In one or more examples,
the generated sequences 106 can include amino acid
sequences of antibodies. In various implementations, the
model implemented by the sequence generating component
104 can include one or more functions.

[0027] In wvarious implementations, the generative
machine learning architecture 102 can implement one or
more neural network technologies. For example. the
machine learning architecture 102 can implement one or
more recurrent neural networks. Additionally, the machine
learning architecture 102 can implement one or more con-
volutional neural networks. In certain implementations. the
machine learning architecture 102 can implement a combi-
nation of recurrent neural networks and convolutional neural
networks. In examples, the machine learning architecture
102 can include a generative adversarial network (GAN). In
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these situations, the sequence generating component 104 can
include a generator and the generative machine learning
architecture 102 can also include a challenging component.
In further examples, the generative machine learning archi-
tecture 102 may include an autoencoder. In one or more
illustrative examples, the generative machine learning archi-
tecture 102 may include a variational autoencoder. In these
scenarios, the sequence generating component 104 may
include at least one of an encoder or a decoder of a
variational autoencoder.

[0028] The generated sequences 106 can be produced by
the sequence generating component 104 based on input data
108. In one or more examples, the input data 108 can include
one or more amino acid sequences, such as a template
protein sequence. The input data 108 may also include an
input vector that includes computer-generated noise that is
produced by a random noise generator or a pseudo-random
noise generator.

[0029] The generated sequences 106 may be evaluated
with respect to training sequences 110. The training
sequences 110 may correspond to amino acid sequences
obtained from the protein sequence data 112. The protein
sequence data 112 can include sequences of proteins
obtained from one or more data sources that store protein
amino acid sequences. The protein sequence data 112 may
include amino acid sequences of one or more proteins, such
as fibronectin type III (FNIII) proteins, avimers, antibodies,
VHH domains, kinases, zinc fingers, and the like.

[0030] The protein sequences included in the protein
sequence data 112 can be subject to data preprocessing 114
before being provided to the generative machine learning
architecture 102. In implementations, the protein sequence
data 112 can be arranged according to a classification system
by the data preprocessing 114 before being provided to the
generative machine learning architecture 102. The data
preprocessing 114 can include pairing amino acids included
in the proteins of the protein sequence data 112 with
numerical values that can represent structure-based posi-
tions within the proteins. The numerical values can include
a sequence of numbers having a starting point and an ending
point. In an illustrative example, a T can be paired with the
number 43 indicating that a Threonine molecule is located at
a structure-based position 43 of a specified protein domain

type.

[0031] In various implementations, the classification sys-
tem implemented by the data preprocessing 114 can desig-
nate a particular number of positions for certain regions of
proteins. For example, the classification system can desig-
nate that portions of proteins have particular functions
and/or characteristics can have a specified number of posi-
tions. In various situations, not all of the positions included
in the classification system may be associated with an amino
acid because the number of amino acids in a particular
region of a protein may vary between proteins. To illustrate,
the number of amino acids in a region of a protein can vary
for different types of proteins. In additional examples, the
structure of a protein can be reflected. In examples, positions
of the classification system that are not associated with a
particular amino acid can indicate various structural features
of a protein, such as a turn or a loop. In an illustrative
example, a classification system for antibodies can indicate
that heavy chain regions. light chain regions, and hinge
regions have a specified number of positions assigned to
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them and the amino acids of the antibodies can be assigned
to the positions according to the classification system.

[0032] Inimplementations, the data included in the protein
sequence data 112 used to train the generative machine
learning architecture 102 can impact the amino acid
sequences produced by the sequence generating component
104. For example, the characteristics, biophysical proper-
ties, manufacturing characteristics (e.g., titer, yield, etc.) and
so forth, of the protein sequence data 112 can impact
characteristics, biophysical properties, and/or manufactur-
ing characteristics of the generated sequences 106 produced
by the sequence generating component 104. To illustrate, in
situations where antibodies are included in the protein
sequence data 112 provided to the generative machine
learning architecture 102, the amino acid sequences gener-
ated by the sequence generating component 104 can corre-
spond to antibody amino acid sequences. In another
example, in scenarios where T-cell receptors are included in
the protein sequence data 112 provided to the generative
machine learning architecture 102, the amino acid sequences
generated by the sequence generating component 104 can
correspond to T-cell receptor amino acid sequences. In an
additional example, in situations where kinases are included
in the protein sequence data 112 provided to the generative
machine learning architecture 102, the amino acid sequences
generated by the sequence generating component 104 can
correspond to amino acid sequences of kinases. In imple-
mentations where amino acid sequences of a variety of
different types of proteins are included in the protein
sequence data 112 provided to the generative machine
learning architecture 102, the sequence generating compo-
nent 104 can generate amino acid sequences having char-
acteristics of proteins generally and may not correspond to
a particular type of protein.

[0033] The output produced by the data preprocessing 114
can include structured sequences 116. The structured
sequences 116 can include a matrix indicating amino acids
associated with various positions of a protein. In examples,
the structured sequences 116 can include a matrix having
columns corresponding to different amino acids and rows
that correspond to structure-based positions of proteins. For
each element in the matrix, a 0 can be used to indicate the
absence of an amino acid at the corresponding position and
a 1 can be used to indicate the presence of an amino acid at
the corresponding position. In situations where a position
represents a gap in an amino acid sequence, the row asso-
ciated with the position can comprise zeroes for each
column. The generated sequence(s) 106 can also be repre-
sented using a vector according to a same or similar number
scheme as used for the structured sequences 116. In some
illustrative examples, the structured sequences 116 and the
generated sequence(s) 106 can be encoded using a method
that may be referred to as a one-hot encoding method.

[0034] The generative machine learning architecture 102
may analyze the generated sequences 106 with respect to the
training sequences 110 to evaluate a loss function 118 of the
generative machine learning architecture 102. In one or
more examples, output of the loss function 118 can be used
to modify the sequences generated by the sequence gener-
ating component 104. For example, output related to the loss
function 118 can be used to modify one or more components
of the generative machine learning architecture 102, such as
an encoder, a decoder, and/or a generator of a GAN, to
produce generated sequences 106 that correspond more
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closely to the training sequences 110. In one or more
examples, components of the generative machine learning
architecture 102 may be modified to optimize the loss
function 118. In various examples, components of the gen-
erative machine learning architecture 102 can be modified to
minimize the loss function 118.

[0035] After the generative machine learning architecture
102 has undergone a training process, a trained model 120
can be generated that can produce sequences of proteins.
The trained model 120 can include one or more components
of the generative machine learning architecture 102 after a
training process using the protein sequence data 112. In one
or more implementations, the trained model 120 can include
a generator of a GAN that has been trained using the protein
sequence data 112. Additionally, the trained model 120 can
include at least one of an encoder or a decoder of an
autoencoder that has been trained using the protein sequence
data 112. In examples, the training process for the generative
machine learning architecture 102 can be complete after the
function(s) implemented by one or more components of the
generative machine learning architecture 102 converge. The
convergence of a function can be based on the movement of
values of model parameters toward particular values as
protein sequences are generated by the sequence generating
component 104 and feedback is obtained in relation to the
loss function 118 based on differences between the training
sequences 110 and the generated sequences 106.

[0036] In various implementations, the training of the
generative machine learning architecture 102 can be com-
plete when the protein sequences generated by the sequence
generating component 104 have particular characteristics.
To illustrate, the amino acid sequences generated by the
sequence generating component 104 can be analyzed by a
software tool that can analyze amino acid sequences to
determine at least one of biophysical properties of the amino
acid sequences, structural features of the amino acid
sequences, or adherence to amino acid sequences corre-
sponding to one or more protein germlines. As used herein,
germline, can correspond to amino acid sequences of pro-
teins that are conserved when cells of the proteins replicate.
An amino acid sequence can be conserved from a parent cell
to a progeny cell when the amino acid sequence of the
progeny cell has at least a threshold amount of identity with
respect to the corresponding amino acid sequence in the
parent cell. In an illustrative example, a portion of an amino
acid sequence of a human antibody that is part of a kappa
light chain that is conserved from a parent cell to a progeny
cell can be a germline portion of the antibody.

[0037] Sequence input 122 can be provided to the trained
model 120, and the trained model 120 can produce
sequences 124. The sequence input 122 can correspond to
random or pseudo-random series of numbers that can be
used to produce the sequences 124 that can include amino
acid sequences of proteins. The sequences 124 produced by
the trained model 120 can be represented as a matrix
structure that is the same as or similar to the matrix structure
used to represent the structured sequences 116 and the
generated sequence(s) 106. In various implementations, the
matrices produced by the trained model 120 that comprise
the sequences 124 can be decoded to produce a string of
amino acids that correspond to the sequence of a protein. At
operation 126, the sequences 124 can be evaluated to
determine whether the sequences 124 have a specified set of
characteristics. The sequence evaluation performed at opera-
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tion 126 can produce metrics 128 that indicate characteris-
tics of the sequences 124. Additionally, the metrics 128 can
indicate an amount of correspondence between the charac-
teristics of the sequences 124 and a specified set of charac-
teristics. In some examples, the metrics 128 can indicate a
number of positions of an amino acid sequence 124 that vary
from an amino acid sequence of a protein produced from a
germline gene.

[0038] The sequences 124 produced by the model 120 can
correspond to various types of proteins. For examples, the
sequences 124 can correspond to proteins that function as
T-cell receptors. In additional examples, the sequences 124
can correspond to proteins that function as catalysts to cause
biochemical reactions within an organism to take place. The
sequences 124 can also correspond to one or more types of
antibodies. To illustrate, the sequences 124 can correspond
to one or more antibody subtypes, such as immunoglobin A
(IgA), immunoglobin D (IgD), immunoglobin E (IgE),
immunoglobin G (IgG), or immunoglobin M (IgM). Further,
the sequences 124 can correspond to additional proteins that
bind antigens. In examples, the sequences 124 can corre-
spond to affibodies, affilins, affimers, affitins, alphabodies,
anticalins, avimers, monobodies, designed ankyrin repeat
proteins (DARPins), nanoCLAMP (clostridal antibody
mimetic proteins), antibody fragments, or combinations
thereof. In still other examples, the sequences 124 can
correspond to amino acid sequences that participate in
protein-to-protein interactions, such as proteins that have
regions that bind to antigens or regions that bind to other
molecules.

[0039] In some implementations, the sequences 124 can
be subject to sequence filtering at operation 130 to produce
one or more filtered sequences 132. The sequence filtering
130 can parse the sequences 124 for one or more of the
sequences 124 that correspond to one or more characteris-
tics. For example, the sequence filtering at operation 130 can
analyze the sequences 124 to identify sequences 124 that
have specified amino acids at particular positions. The
sequence filtering 130 can also identify one or more of the
sequences 124 that have one or more particular strings of
amino acids. In various implementations, the sequence fil-
tering at operation 130 can identify one or more of the
sequences 124 that have a set of biophysical properties
based on similarities between at least one of the sequences
124 and amino acid sequences of proteins having the set of
biophysical properties.

[0040] FIG. 2 is a diagram illustrating an example frame-
work 200 that includes an encoding component and a
decoding component to generate protein sequences, in
accordance with some implementations. The framework 200
can include a generative machine learning architecture 202.
The generative machine learning architecture 202 can cor-
respond to an autoencoder implementation and include an
encoding component 204 and a decoding component 206.
The encoding component 204 can determine an encoding for
input amino acid sequences and the encoding can be
decoded by the decoding component 206 to produce one or
more additional amino acid sequences. In various examples,
an input sample 208 can be provided to the decoding
component 206 and the decoding component 206 can use the
input sample 208 and the encoding to produce generated
sequences 210. The generated sequences 210 can be ana-
lyzed with respect to the training sequences 212 and a loss
function 214 can be optimized based on differences between
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the generated sequences 210 and the training sequences 212.
In one or more examples, output of the loss function 214 can
be used to modify the sequences generated by the decoding
component 206. In one or more examples, at least one of the
encoding component 204 or the decoding component 206
may be modified to optimize the loss function 214. In
various examples, at least one of the encoding component
204 or the decoding component 206 can be modified to
minimize the loss function 214.

[0041] The generated sequences 210 can include amino
acid sequences of proteins. In one or more examples, the
generated sequences 210 can include amino acid sequences
of antibodies. In various implementations, the decoding
component 206 can implement a model that produces the
generated sequences 210. In various examples, the model
implemented by the decoding component 206 can include
one or more functions.

[0042] The training sequences 212 may correspond to
amino acid sequences obtained from the protein sequence
data 214. The protein sequence data 214 can include
sequences of proteins obtained from one or more data
sources that store protein amino acid sequences. The protein
sequence data 214 may include amino acid sequences of one
or more proteins, such as fibronectin type III (FNIII) pro-
teins, avimers, antibodies, VHH domains, kinases, zinc
fingers, and the like.

[0043] The protein sequences included in the protein
sequence data 214 can be subject to data preprocessing 216
before being provided to the generative machine learning
architecture 202. In implementations, the protein sequence
data 214 can be arranged according to a classification system
by the data preprocessing 216 before being provided to the
generative machine learning architecture 202. The data
preprocessing 216 can include pairing amino acids included
in the proteins of the protein sequence data 214 with
numerical values that can represent structure-based posi-
tions within the proteins. The numerical values can include
a sequence of numbers having a starting point and an ending
point. In an illustrative example, a T can be paired with the
number 43 indicating that a Threonine molecule is located at
a structure-based position 43 of a specified protein domain

type.

[0044] In various implementations, the classification sys-
tem implemented by the data preprocessing 216 can desig-
nate a particular number of positions for certain regions of
proteins. For example, the classification system can desig-
nate that portions of proteins have particular functions
and/or characteristics can have a specified number of posi-
tions. In various situations, not all of the positions included
in the classification system may be associated with an amino
acid because the number of amino acids in a particular
region of a protein may vary between proteins. To illustrate,
the number of amino acids in a region of a protein can vary
for different types of proteins. In additional examples, the
structure of a protein can be reflected. In examples, positions
of the classification system that are not associated with a
particular amino acid can indicate various structural features
of a protein, such as a turn or a loop. In an illustrative
example, a classification system for antibodies can indicate
that heavy chain regions. light chain regions, and hinge
regions have a specified number of positions assigned to
them and the amino acids of the antibodies can be assigned
to the positions according to the classification system.
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[0045] Inimplementations, the data included in the protein
sequence data 216 used to train the generative machine
learning architecture 202 can impact the amino acid
sequences produced by the decoding component 206. For
example, the characteristics, biophysical properties, manu-
facturing characteristics (e.g., titer, yield, etc.) and so forth,
of the protein sequence data 216 can impact characteristics,
biophysical properties, and/or manufacturing characteristics
of the generated sequences 210 produced by the decoding
component 206. To illustrate, in situations where antibodies
are included in the protein sequence data 216 provided to the
generative machine learning architecture 202, the amino
acid sequences generated by the decoding component 206
can correspond to antibody amino acid sequences. In
another example, in scenarios where T-cell receptors are
included in the protein sequence data 216 provided to the
generative machine learning architecture 202, the amino
acid sequences generated by the decoding component 206
can correspond to T-cell receptor amino acid sequences. In
an additional example, in situations where kinases are
included in the protein sequence data 216 provided to the
generative machine learning architecture 202, the amino
acid sequences generated by the decoding component 206
can correspond to amino acid sequences of kinases. In
implementations where amino acid sequences of a variety of
different types of proteins are included in the protein
sequence data 216 provided to the generative machine
learning architecture 202, the decoding component 206 can
generate amino acid sequences having characteristics of
proteins generally and may not correspond to a particular
type of protein.

[0046] The output produced by the data preprocessing 218
can include structured sequences 220. The structured
sequences 220 can include a matrix indicating amino acids
associated with various positions of a protein. In examples,
the structured sequences 220 can include a matrix having
columns corresponding to different amino acids and rows
that correspond to structure-based positions of proteins. For
each element in the matrix, a 0 can be used to indicate the
absence of an amino acid at the corresponding position and
a 1 can be used to indicate the presence of an amino acid at
the corresponding position. In situations where a position
represents a gap in an amino acid sequence, the row asso-
ciated with the position can comprise zeroes for each
column. The generated sequence(s) 210 can also be repre-
sented using a vector according to a same or similar number
scheme as used for the structured sequences 220. In some
illustrative examples, the structured sequences 220 and the
generated sequence(s) 210 can be encoded using a method
that may be referred to as a one-hot encoding method.

[0047] After the generative machine learning architecture
202 has undergone a training process, a trained model 222
can be generated that can produce sequences of proteins.
The trained model 222 can include one or more components
of the generative machine learning architecture 202 after a
training process using the protein sequence data 216. In one
or more implementations, the trained model 222 can include
at least one of the encoding component 204 or the decoding
component 206 that has been trained using the protein
sequence data 216. In examples, the training process for the
generative machine learning architecture 202 can be com-
plete after the function(s) implemented by one or more
components of the generative machine learning architecture
202 converge. The convergence of a function can be based
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on the movement of values of model parameters toward
particular values as protein sequences are generated by the
decoding component 206 and feedback is obtained in rela-
tion to the loss function 214 based on differences between
the training sequences 212 and the generated sequences 210.

[0048] In various implementations, the training of the
generative machine learning architecture 202 can be com-
plete when the protein sequences generated by the decoding
component 206 have particular characteristics. To illustrate,
the amino acid sequences generated by the decoding com-
ponent 206 can be analyzed by a software tool that can
analyze amino acid sequences to determine at least one of
biophysical properties of the amino acid sequences, struc-
tural features of the amino acid sequences, or adherence to
amino acid sequences corresponding to one or more protein
germlines. As used herein, germline, can correspond to
amino acid sequences of proteins that are conserved when
cells of the proteins replicate. An amino acid sequence can
be conserved from a parent cell to a progeny cell when the
amino acid sequence of the progeny cell has at least a
threshold amount of identity with respect to the correspond-
ing amino acid sequence in the parent cell. In an illustrative
example, a portion of an amino acid sequence of a human
antibody that is part of a kappa light chain that is conserved
from a parent cell to a progeny cell can be a germline portion
of the antibody.

[0049] Sequence input 224 can be provided to the trained
model 222, and the trained model 222 can produce
sequences 226. The sequence input 224 can correspond to
random or pseudo-random series of numbers that can be
used to produce the sequences 226 that can include amino
acid sequences of proteins. The sequences 226 produced by
the trained model 222 can be represented as a matrix
structure that is the same as or similar to the matrix structure
used to represent the structured sequences 220 and the
generated sequence(s) 210. In various implementations, the
matrices produced by the trained model 222 that comprise
the sequences 226 can be decoded to produce a string of
amino acids that correspond to the sequence of a protein. At
operation 228, the sequences 226 can be evaluated to
determine whether the sequences 226 have a specified set of
characteristics. The sequence evaluation performed at opera-
tion 228 can produce metrics 230 that indicate characteris-
tics of the sequences 226. Additionally, the metrics 230 can
indicate an amount of correspondence between the charac-
teristics of the sequences 226 and a specified set of charac-
teristics. In some examples, the metrics 230 can indicate a
number of positions of an amino acid sequence 226 that vary
from an amino acid sequence of a protein produced from a
germline gene.

[0050] The sequences 226 produced by the model 222 can
correspond to various types of proteins. For examples, the
sequences 226 can correspond to proteins that function as
T-cell receptors. In additional examples, the sequences 226
can correspond to proteins that function as catalysts to cause
biochemical reactions within an organism to take place. The
sequences 226 can also correspond to one or more types of
antibodies. To illustrate, the sequences 226 can correspond
to one or more antibody subtypes, such as immunoglobin A
(IgA), immunoglobin D (IgD), immunoglobin E (IgF),
immunoglobin G (IgG), or immunoglobin M (IgM). Further,
the sequences 226 can correspond to additional proteins that
bind antigens. In examples, the sequences 226 can corre-
spond to affibodies, affilins, affimers, affitins, alphabodies,
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anticalins, avimers, monobodies, designed ankyrin repeat
proteins (DARPins), nanoCLAMP (clostridal antibody
mimetic proteins), antibody fragments, or combinations
thereof. In still other examples, the sequences 226 can
correspond to amino acid sequences that participate in
protein-to-protein interactions, such as proteins that have
regions that bind to antigens or regions that bind to other
molecules.

[0051] In some implementations, the sequences 226 can
be subject to sequence filtering at operation 232 to produce
one or more filtered sequences 234. The sequence filtering
232 can parse the sequences 226 for one or more of the
sequences 226 that correspond to one or more characteris-
tics. For example, the sequence filtering at operation 232 can
analyze the sequences 226 to identify sequences 226 that
have specified amino acids at particular positions. The
sequence filtering 232 can also identify one or more of the
sequences 226 that have one or more particular strings of
amino acids. In various implementations, the sequence fil-
tering at operation 232 can identify one or more of the
sequences 226 that have a set of biophysical properties
based on similarities between at least one of the sequences
226 and amino acid sequences of proteins having the set of
biophysical properties.

[0052] FIG. 3 is a diagram illustrating an example frame-
work 300 including a generating component and a challeng-
ing component to generate protein sequences, in accordance
with some implementations. The framework 300 can include
a generative machine learning architecture 302. The genera-
tive machine learning architecture 302 can include a gener-
ating component 304 and a challenging component 306. The
generating component 304 can implement a model to gen-
erate amino acid sequences based on input provided to the
generating component 304. In various implementations, the
model implemented by the generating component 304 can
include one or more functions. The challenging component
306 can generate output indicating whether the amino acid
sequences produced by the generating component 304 sat-
isfy various characteristics. The output produced by the
challenging component 306 can be provided to the gener-
ating component 304 and the model implemented by the
generating component 304 can be modified based on the
feedback provided by the challenging component 306. In
various implementations, the challenging component 306
can compare the amino acid sequences generated by the
generating component 304 with amino acid sequences of
proteins and generate an output indicating an amount of
correspondence between the amino acid sequences produced
by the generating component 304 and the amino acid
sequences of proteins provided to the challenging compo-
nent 306.

[0053] In various implementations, the machine learning
architecture 302 can implement one or more neural network
technologies. For example, the machine learning architec-
ture 302 can implement one or more recurrent neural net-
works. Additionally, the machine learning architecture 302
can implement one or more convolutional neural networks.
In certain implementations, the machine learning architec-
ture 302 can implement a combination of recurrent neural
networks and convolutional neural networks. In examples,
the machine learning architecture 302 can include a genera-
tive adversarial network (GAN). In these situations, the
generating component 304 can include a generator and the
challenging component 306 can include a discriminator. In
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additional implementations, the machine learning architec-
ture 302 can include a Wasserstein generative adversarial
network (wGAN). In these scenarios, the generating com-
ponent 304 can include a generator and the classifying
component 306 can include a critic.

[0054] In the illustrative example of FIG. 3, an input
vector 308 can be provided to the generating component 304
and the generating component 304 can produce one or more
generated sequences 310 from the input vector 308 using a
model. In particular implementations, the input vector 308
can include noise that is generated by a random or pseudo-
random number generator. The generated sequence(s) 310
can be compared by the challenging component 306 against
sequences of proteins included in the protein sequence data
312 that have been encoded according to a particular
schema. The protein sequence data 312 can include
sequences of proteins obtained from one or more data
sources that store protein sequences.

[0055] Based on similarities and differences between the
generated sequence(s) 310 and the sequences obtained from
the protein sequence data 312, the classifying component
306 can generate a classification output 314 that indicates an
amount of similarity or an amount of difference between the
generated sequence 310 and sequences included in the
protein sequence data 312. In examples, the challenging
component 306 can label the generated sequence(s) 310 as
zero and the structured sequences obtained from the protein
sequence data 312 as one. In these situations, the classifi-
cation output 314 can correspond to a number from 0 and 1.
In additional examples, the challenging component 306 can
implement a distance function that produces an output that
indicates an amount of distance between the generated
sequence(s) 310 and the proteins included in the protein
sequence data 312. In these scenarios, the challenging
component 306 can label the generated sequence(s) 310 as
-1 and the encoded amino acid sequences obtained from the
protein sequence data 312 as 1. In implementations where
the challenging component 306 implements a distance func-
tion, the classification output 314 can be a number from —co
to co. In some examples, the amino acid sequence obtained
from the protein sequence data 312 can be referred to as
ground truth data.

[0056] The protein sequences included in the protein
sequence data 312 can be subject to data preprocessing 316
before being provided to the challenging component 306. In
implementations, the protein sequence data 312 can be
arranged according to a classification system before being
provided to the challenging component 306. The data pre-
processing 316 can include pairing amino acids included in
the proteins of the protein sequence data 312 with numerical
values that can represent structure-based positions within the
proteins. The numerical values can include a sequence of
numbers having a starting point and an ending point. In an
illustrative example, a T can be paired with the number 43
indicating that a Threonine molecule is located at a struc-
ture-based position 43 of a specified protein domain type. In
illustrative examples, structure-based numbering can be
applied to any general protein type, such as fibronectin type
IIT (FNIII) proteins, avimers, antibodies, VHH domains,
kinases, zinc fingers, and the like.

[0057] In various implementations, the classification sys-
tem implemented by the data preprocessing 316 can desig-
nate a particular number of positions for certain regions of
proteins. For example, the classification system can desig-
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nate that portions of proteins have particular functions
and/or characteristics can have a specified number of posi-
tions. In various situations, not all of the positions included
in the classification system may be associated with an amino
acid because the number of amino acids in a particular
region of a protein may vary between proteins. To illustrate,
the number of amino acids in a region of a protein can vary
for different types of proteins. In additional examples, the
structure of a protein can be reflected. In examples, positions
of the classification system that are not associated with a
particular amino acid can indicate various structural features
of a protein, such as a turn or a loop. In an illustrative
example, a classification system for antibodies can indicate
that heavy chain regions. light chain regions, and hinge
regions have a specified number of positions assigned to
them and the amino acids of the antibodies can be assigned
to the positions according to the classification system.

[0058] In implementations, the data used to train the
machine learning architecture 302 can impact the amino acid
sequences produced by the generating component 304. For
example, in situations where antibodies are included in the
protein sequence data 312 provided to the challenging
component 306, the amino acid sequences generated by the
generating component 304 can correspond to antibody
amino acid sequences. In another example, in scenarios
where T-cell receptors are included in the protein sequence
data 312 provided to the challenging component 306 the
amino acid sequences generated by the generating compo-
nent 304 can correspond to T-cell receptor amino acid
sequences. In an additional example, in situations where
kinases are included in the protein sequence data 312
provided to the challenging component 306, the amino acid
sequences generated by the generating component 304 can
correspond to amino acid sequences of kinases. In imple-
mentations where amino acid sequences of a variety of
different types of proteins are included in the protein
sequence data 312 provided to the classifying component
306, the generating component 304 can generate amino acid
sequences having characteristics of proteins generally and
may not correspond to a particular type of protein. Further,
in various examples, the amino acid sequences produced by
the generating component 304 can correspond to the types of
proportions of amino acid sequences included in the protein
sequence data 312 provided to the challenging component
306.

[0059] The output produced by the data preprocessing 316
can include structured sequences 318. The structured
sequences 318 can include a matrix indicating amino acids
associated with various positions of a protein. In examples,
the structured sequences 318 can include a matrix having
columns corresponding to different amino acids and rows
that correspond to structure-based positions of proteins. For
each element in the matrix, a 0 can be used to indicate the
absence of an amino acid at the corresponding position and
a 1 can be used to indicate the presence of an amino acid at
the corresponding position. In situations where a position
represents a gap in an amino acid sequence, the row asso-
ciated with the position can comprise zeroes for each
column. The generated sequence(s) 310 can also be repre-
sented using a vector according to a same or similar number
scheme as used for the structured sequences 318. In some
illustrative examples, the structured sequences 318 and the
generated sequence(s) 310 can be encoded using a method
that may be referred to as a one-hot encoding method.
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[0060] After the machine learning architecture 302 has
undergone a training process, a trained model 320 can be
generated that can produce sequences of proteins. The
trained model 320 can include the generating component
304 after a training process using the protein sequence data
312. In examples, the training process for the machine
learning architecture 302 can be complete after the function
(s) implemented by the generating component 304 and the
function(s) implemented by the challenging component 306
converge. The convergence of a function can be based on the
movement of values of model parameters toward particular
values as protein sequences are generated by the generating
component 304 and feedback is obtained from the challeng-
ing component 306. In various implementations, the training
of the machine learning architecture 302 can be complete
when the protein sequences generated by the generating
component 304 have particular characteristics. To illustrate,
the amino acid sequences generated by the generating com-
ponent 304 can be analyzed by a software tool that can
analyze amino acid sequences to determine at least one of
biophysical properties of the amino acid sequences, struc-
tural features of the amino acid sequences, or adherence to
amino acid sequences corresponding to one or more protein
germlines. As used herein, germline, as used herein, can
correspond to amino acid sequences of proteins that are
conserved when cells of the proteins replicate. An amino
acid sequence can be conserved from a parent cell to a
progeny cell when the amino acid sequence of the progeny
cell has at least a threshold amount of identity with respect
to the corresponding amino acid sequence in the parent cell.
In an illustrative example, a portion of an amino acid
sequence of a human antibody that is part of a kappa light
chain that is conserved from a parent cell to a progeny cell
can be a germline portion of the antibody.

[0061] Sequence input 322 can be provided to the trained
model 320, and the trained model 320 can produce
sequences 324. The sequence input 322 can correspond to
random or pseudo-random series of numbers that can be
used to produce the sequences 324 that can include amino
acid sequences of proteins. The sequences 324 produced by
the trained model 320 can be represented as a matrix
structure that is the same as or similar to the matrix structure
used to represent the structured sequences 318 and the
generated sequence(s) 310. In various implementations, the
matrices produced by the trained model 320 that comprise
the sequences 324 can be decoded to produce a string of
amino acids that correspond to the sequence of a protein. At
326, the sequences 324 can be evaluated to determine
whether the sequences 324 have a specified set of charac-
teristics. The sequence evaluation 326 can produce metrics
328 that indicate characteristics of the sequences 324. Addi-
tionally, the metrics 328 can indicate an amount of corre-
spondence between the characteristics of the sequences 324
and a specified set of characteristics. In some examples, the
metrics 328 can indicate a number of positions of an amino
acid sequence 324 that vary from an amino acid sequence of
a protein produced from a germline gene.

[0062] The sequences 324 produced by the model 320 can
correspond to various types of proteins. For examples, the
sequences 324 can correspond to proteins that function as
T-cell receptors. In additional examples, the sequences 324
can correspond to proteins that function as catalysts to cause
biochemical reactions within an organism to take place. The
sequences 324 can also correspond to one or more types of
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antibodies. To illustrate, the sequences 324 can correspond
to one or more antibody subtypes, such as immunoglobin A
(IgA), immunoglobin D (IgD), immunoglobin E (IgE),
immunoglobin G (IgG), or immunoglobin M (IgM). Further,
the sequences 324 can correspond to additional proteins that
bind antigens. In examples, the sequences 324 can corre-
spond to affibodies, affilins, affimers, affitins, alphabodies,
anticalins, avimers, monobodies, designed ankyrin repeat
proteins (DARPins), nanoCLAMP (clostridal antibody
mimetic proteins), antibody fragments, or combinations
thereof. In still other examples, the sequences 324 can
correspond to amino acid sequences that participate in
protein-to-protein interactions, such as proteins that have
regions that bind to antigens or regions that bind to other
molecules.

[0063] In some implementations, the sequences 324 can
be subject to sequence filtering 330 to produce one or more
filtered sequences 332. The sequence filtering 330 can parse
the sequences 324 for one or more of the sequences 324 that
correspond to one or more characteristics. For example, the
sequence filtering 330 can analyze the sequences 324 to
identify sequences 324 that have specified amino acids at
particular positions. The sequence filtering 330 can also
identify one or more of the sequences 324 that have one or
more particular strings of amino acids. In various imple-
mentations, the sequence filtering 330 can identify one or
more of the sequences 324 that have a set of biophysical
properties based on similarities between at least one of the
sequences 324 and amino acid sequences of proteins having
the set of biophysical properties.

[0064] FIG. 4 is a diagram illustrating an example frame-
work 400 to generate protein sequences using a first set of
training data having a first set of characteristics and a second
set of training data that has a second set of characteristics
that is different from the first set of characteristics, in
accordance with some implementations. The framework 400
can include a first generative adversarial network 402. The
first generative adversarial network 402 can include a first
generating component 404 and a first challenging compo-
nent 406. In various implementations, the first challenging
component 406 can be a discriminator. In additional situa-
tions, such as when the first generative adversarial network
402 is a Wasserstein GAN, the first challenging component
406 can include a critic. The first generating component 204
can implement a model to generate amino acid sequences
based on input provided to the first generating component
404. The first challenging component 406 can generate
output indicating whether the amino acid sequences pro-
duced by the generating component 404 satisfy various
characteristics. The output produced by the first challenging
component 406 can be provided to the generating compo-
nent 404 and a model implemented by the first generating
component 404 can be modified based on the feedback
provided by the first challenging component 406. In various
implementations, the first challenging component 406 can
compare the amino acid sequences produced by the first
generating component 404 with amino acid sequences of
proteins and generate an output indicating an amount of
correspondence between the amino acid sequences produced
by the first generating component 404 and the amino acid
sequences of proteins provided to the first challenging
component 406.

[0065] A first input vector 408 can be provided to the first
generating component 404 and the first generating compo-



US 2022/0230710 Al

nent 404 can produce one or more first generated sequences
410 using the first input vector 408 using a model. In
particular implementations, the first input vector 408 can be
produced using a random or pseudo-random number gen-
erator. In illustrative examples, the first input vector 408 can
include a noise signal that includes a series of numbers.

[0066] The first generated sequence(s) 410 can be com-
pared by the first challenging component 406 against
sequences of proteins included in the protein sequence data
412. The first protein sequence data 412 can include
sequences of proteins obtained from one or more data
sources that store protein sequences. Based on similarities
and differences between the first generated sequence(s) 410
and the sequences obtained from the protein sequence data
412, the first challenging component 406 can generate a first
classification output 414 that indicates an amount of simi-
larity or an amount of difference between the first generated
sequence(s) 410 and sequences included in the first protein
sequence data 412. The first challenging component 406 can
label the first generated sequence(s) 410 with a zero and
structured sequences derived from the first protein sequence
data 412 with a one. In these situations, the first classifica-
tion output 414 can include a number from 0 and 1 In
additional examples when the first generative adversarial
network 402 is a Wasserstein GAN, the first challenging
component 406 can implement a distance function that
produces an output that indicates an amount of distance
between the first generated sequence(s) 410 and the proteins
included in the first protein sequence data 412. In these
scenarios, the first challenging component 406 can label the
first generated sequence(s) 410 as —1 and the encoded amino
acid sequences obtained from the first protein sequence data
412 as 1. In implementations where the first challenging
component 406 implements a distance function, the first
classification output 414 can be a number from - to . In
some examples, the amino acid sequences obtained from the
first protein sequence data 412 can be referred to as ground
truth data.

[0067] The protein sequences included in the protein
sequence data 412 can be subject to first data preprocessing
416 before being provided to the first challenging compo-
nent 406. In implementations, the protein sequence data 412
can be arranged according to a classification system before
being provided to the first challenging component 406. The
first data preprocessing 416 can include pairing amino acids
included in the proteins of the first protein sequence data 412
with numerical values that can represent positions within the
proteins. The numerical values can include a sequence of
numbers having a starting point and an endpoint. The first
data preprocessing 416 can generate first structured
sequences 418 that are provided to the first challenging
component 406. The first structured sequences 418 can
include a matrix indicating amino acids associated with
various positions of a protein. In examples, the first struc-
tured sequences 418 can include a matrix having columns
corresponding to different amino acids and rows that corre-
spond to structure-based positions of proteins. For each
element in the matrix, a O can be used to indicate the absence
of an amino acid at the corresponding position and a 1 can
be used to indicate the presence of an amino acid at the
corresponding position. In situations where a position rep-
resents a gap in an amino acid sequence, the row associated
with the position can comprise zeroes for each column. The
first generated sequence(s) 410 can also be represented using

Jul. 21, 2022

a vector according to a same or similar number scheme as
used for the first structured sequences 418. In some illus-
trative examples, the first structured sequences 418 and the
first generated sequence(s) 410 can be encoded using a
method that may be referred to as a one-hot encoding
method.

[0068] After the first generative adversarial network 402
has undergone a training process, a trained model 420 can be
generated that can produce sequences of proteins. In
examples, the training process for the first generative adver-
sarial network 402 can be complete after the function(s)
implemented by the first generating component 404 con-
verge. In various implementations, the training of the first
generative adversarial network 402 can be complete when
the protein sequences generated by the first generating
component 404 have particular characteristics. To illustrate,
the amino acid sequences generated using the trained model
420 can be analyzed by a software tool that can analyze
amino acid sequences to determine at least one of biophysi-
cal properties of the amino acid sequences, structural fea-
tures of the amino acid sequences, or adherence to amino
acid sequences corresponding to one or more amino acid
sequences derived from a germline gene of a protein.

[0069] First sequence input 422 can be provided to the
trained model 420, and the trained model 420 can produce
first sequences 424. The first sequence input 422 can cor-
respond to random or pseudo-random series of numbers that
can be used to produce the first sequences 424 that corre-
spond to amino acids and the first sequences 424 can include
amino acid sequences of proteins. The first sequences 424
produced by the trained model 420 can be represented as a
matrix structure that is the same as or similar to the matrix
structure used to represent the first structured sequences 418
and the first generated sequence(s) 410. In various imple-
mentations, the matrices produced by the trained model 420
that comprise the first sequences 424 can be decoded to
produce a string of amino acids that correspond to the
sequence of a protein. At operation 426, a model evaluation
426 can be performed with respect to the trained model 420
based on the first sequences 424 produced by the trained
model 420 and based on model evaluation criteria 428. In
particular implementations, the model evaluation criteria
428 can be the same or similar to the criteria utilized to
determine whether the training of the first generative adver-
sarial network 402 has been completed. In additional imple-
mentations, the model evaluation criteria 428 can be differ-
ent from the criteria utilized to determine whether the
training of the first generative adversarial network 402 has
been completed. In illustrative examples, the model evalu-
ation criteria 428 can correspond to characteristics of the
sequences produced using the trained model 420. In these
scenarios, the model evaluation 426 can include comparing
the first sequences 424 to sequence characteristics included
in the model evaluation criteria 428. To illustrate, the model
evaluation 426 can include determining whether the first
sequences 424 include specified amino acid sequences at
particular positions. In additional implementations, the
model evaluation 426 can include determining whether the
first sequences 424 correspond to amino acids having speci-
fied biophysical and/or having specified tertiary structures.
Further, the model evaluation 426 can include determining
whether there is convergence with respect to the model 420.
In some examples, the model evaluation 426 can include
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review by a human expert of the first sequences 424 based
on the model evaluation criteria 428.

[0070] In illustrative examples, the protein sequence data
412 can include amino acid sequences of antibodies. In these
scenarios, the amino acid sequences provided to the first
challenging component 406 can correspond to antibodies
having a number of different characteristics. For example,
the first challenging component 406 can be provided amino
acid sequences from antibodies of different isotypes, IgA,
IgD, IgE, IgD, and/or IgM. In additional examples, the
amino acid sequences provided to the first challenging
component 406 can be related to proteins derived from
genes of different germlines. In further examples, the amino
acid sequences of antibodies provided to the first challeng-
ing component 406 can have various lengths and/or
sequences for the variable regions of the light chains and/or
the variable regions for the heavy chains. In still other
examples, the amino acid sequences provided to the first
challenging component 406 can be at least portions of light
chain regions of antibodies, at least portions of heavy chain
regions of antibodies, or combinations thereof. In still addi-
tional examples, the amino acid sequences provided to the
first challenging component 406 can have a number of
different biophysical properties of antibodies, such as amino
acid sequences corresponding to hydrophobic regions,
amino acid sequences corresponding to negatively charged
regions, amino acid sequences corresponding to positively
charged regions, or combinations thereof. Further, the amino
acid sequences provided to the first challenging component
406 can correspond to antibodies and/or antibody regions
having various solubility characteristics and/or various ther-
mal degradation characteristics.

[0071] As a result of training the first generative adver-
sarial network 402 on a number of amino acid sequences of
proteins having a first set of characteristics. In examples, the
first generative adversarial network 402 can be trained using
amino acid sequences having a relatively general property.
In some implementations, the first generative adversarial
network 402 can be trained using a dataset on the order of
thousands or more amino acid sequences. In a particular
illustrative example, the first generative adversarial network
402 can be trained to generate amino acid sequences that
exhibit characteristics that correspond to antibodies, in gen-
eral. In these implementations, the model evaluation 426 can
determine whether the first sequences 424 correspond to
general characteristics of antibodies. For example, the model
evaluation criteria 428 can identify the structure of antibod-
ies in the first sequences 424. To illustrate, the model
evaluation 426 can determine whether the first sequences
424 have variable regions and constant regions. The model
evaluation 426 can also determine whether the first
sequences 424 have a specified number or range of numbers
of amino acids that correspond to a number of amino acids
in a heavy chain region and/or a specified number or range
of numbers of amino acids in a light chain region. Addi-
tionally, the model evaluation 426 can determine whether
the first sequences 424 have hinge regions linking constant
regions of heavy chains. Further, the model evaluation 426
can determine whether the first sequences 424 have amino
acids that can form disulfide bonds at specified positions.

[0072] After the model evaluation 426 determines that the
trained model 420 satisfies one or more of the model
evaluation criteria, the trained model 420 can undergo
further training on another dataset. In implementations, the
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trained model 420 can be represented as being included in a
second generative adversarial network 430 that comprises a
second generating component 432 and a second challenging
component 434. In particular examples, the trained model
420 can be represented by the second generating component
432. In various implementations, the second generating
component 432 can include the trained model 420 after one
or more modifications have been made to the trained model
420. For example, modifications can be made to the trained
model 420 in relation to the architecture of the trained model
420, such as the addition of one or more hidden layers or
changes to one or more network filters. The second gener-
ating component 432 can obtain a second input vector 436
to produce second generated sequence(s) 438. In various
implementations, the second challenging component 434
can be a discriminator. In additional situations, such as when
the second generative adversarial network 430 is a Wasser-
stein GAN, the second challenging component 434 can
include a critic. The second input vector 436 can include a
random or pseudo-random sequence of numbers.

[0073] The second challenging component 434 can gen-
erate second classification output 440 indicating whether the
amino acid sequences produced by the second generating
component 432 satisfy various characteristics. In illustrative
examples, based on similarities and differences between the
second generated sequence(s) 438 and the sequences pro-
vided to the second challenging component 434, such as
amino acid sequences included in the protein sequence data
412, the second challenging component 434 can generate the
second classification output 440 that indicates an amount of
similarity or an amount of difference between the second
generated sequence(s) 238 and comparison sequences pro-
vided to the second challenging component 434. The com-
parison sequences provided to the second challenging com-
ponent 434 can correspond to amino acid sequences
included in second protein sequence data 442. The second
protein sequence data 442 can include amino acid sequences
that can be at least partially different from the amino acid
sequences included in the first protein sequence data 412. In
some illustrative examples, the second protein sequence data
442 can include a subset of the first protein sequence data
412. In implementations, protein sequence filtering can be
applied to the first protein sequence data 412 by analyzing
the first protein data 412 according to one or more criteria.
For example, the second protein sequence data 442 can
correspond to particular types of proteins and/or amino acid
sequences that include regions having specified amino acids
at particular positions. Additionally, the second protein
sequence data 442 can correspond to amino acid sequences
of proteins that have specified biophysical properties. In
various implementations, the second protein sequence data
442 can correspond to amino acid sequences of proteins that
have specified structural properties. Examples of specified
structural properties can include surface charge of one or
more regions and post translational modifications.

[0074] The second challenging component 434 can label
the second generated sequence(s) 438 with a zero and
structured sequences derived from the protein sequence data
442 with a one. In these situations, the second classification
output 440 can include a number from 0 and 1 In additional
examples when the second generative adversarial network
430 is a Wasserstein GAN, the second challenging compo-
nent 434 can implement a distance function that produces an
output that indicates an amount of distance between the
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second generated sequence(s) 238 and the proteins included
in the second protein sequence data 442. In implementations
where the second challenging component 434 implements a
distance function, the second classification output 440 can
be a number from -oo to c. In some examples, the amino
acid sequences obtained from the second protein sequence
data 442 can be referred to as ground truth data.

[0075] After the filtered sequences 444 have been pro-
duced by the protein sequence filtering 442, the filtered
sequences can be subject to second data preprocessing 446
before being provided to the second challenging component
434. In implementations, the filtered sequences 444 can be
arranged according to a classification system before being
provided to the second challenging component 434. The
second data preprocessing 444 can include pairing amino
acids included in the proteins of the second protein sequence
data 442 with numerical values that can represent positions
within the proteins. The numerical values can include a
sequence of numbers having a starting point and an end-
point. The second data preprocessing 444 can generate
second structured sequences 446 that are provided to the
second challenging component 434. The second structured
sequences 446 can include a matrix indicating amino acids
associated with various positions of a protein. In examples,
the second structured sequences 446 can include a matrix
having columns corresponding to different amino acids and
rows that correspond to structure-based positions of pro-
teins. For each element in the matrix, a O can be used to
indicate the absence of an amino acid at the corresponding
position and a 1 can be used to indicate the presence of an
amino acid at the corresponding position. The matrix can
also include an additional column that represents a gap in an
amino acid sequence where there is no amino acid at a
particular position of the amino acid sequence. Thus, in
situations where a position represents a gap in an amino acid
sequence, a 1 can be placed in the gap column with respect
to the row associated with the position where an amino acid
is absent. The second generated sequence(s) 438 can also be
represented using a vector according to a same or similar
number scheme as used for the second structured sequences
446. In some illustrative examples, the second structured
sequences 446 and the second generated sequence(s) 438
can be encoded using a method that may be referred to as a
one-hot encoding method.

[0076] After the second generative adversarial network
430 has undergone a training process, a modified trained
model 448 can be generated that can produce sequences of
proteins. The modified trained model 448 can represent the
trained model 420 after being trained using the second
protein sequence data 442. In examples, the training process
for the second generative adversarial network 430 can be
complete after the function(s) implemented by the second
generating component 432 and the second challenging com-
ponent 434 converge. The convergence of a function can be
based on the movement of values of model parameters
toward particular values as protein sequences are generated
by the second generating component 432 and feedback is
obtained from the second challenging component 434. In
various implementations, the training of the second genera-
tive adversarial network 430 can be complete when the
protein sequences generated by the second generating com-
ponent 432 have particular characteristics.

[0077] Second sequence input 450 can be provided to the
modified trained model 448, and the modified trained model
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448 can produce second sequences 452. The second
sequence input 450 can include a random or pseudo-random
series of numbers and the second sequences 452 can include
amino acid sequences that can be sequences of proteins. At
operation 454, the second sequences 452 can be evaluated to
determine whether the second sequences 452 have a speci-
fied set of characteristics. The sequence evaluation 454 can
produce metrics 456 that indicate characteristics of the
second sequences 452, such as biophysical properties of a
protein or a region of a protein and/or the presence or
absence of amino acids located at specified positions. Addi-
tionally, the metrics 456 can indicate an amount of corre-
spondence between the characteristics of the second
sequences 452 and a specified set of characteristics. In some
examples, the metrics 456 can indicate a number of positions
of a second sequence 452 that vary from a sequence pro-
duced by a germline gene of a protein. Further, the sequence
evaluation 454 can determine the presence or absence of
structural features of proteins that correspond to the second
sequences 452.

[0078] By continuing to train the trained model 420 as part
of the second generative adversarial network 430, the modi-
fied trained model 448 can be produced that generates amino
acid sequences that are more specifically tailored than those
produced by the trained model 420. For example, the second
generative adversarial network 430 can be training using
filtered amino acid sequences that correspond to proteins
have particular structure features and/or specified biophysi-
cal properties. Thus, once the trained model 420 has been
produced by the first generative adversarial network 402 to
generate amino acid sequences that correspond to proteins,
the modified trained model 448 can be produced as part of
the second generative adversarial network 430 to produce
amino acid sequences of more specific proteins according to
the second protein sequence data 442 provided to the second
generative adversarial network 430.

[0079] Additionally, in many situations where it is desired
to produce amino acid sequences of proteins having specific
characteristics, the number of sequences available to train a
generative adversarial network is limited. In these situations,
the accuracy, efficiency, and/or effectiveness of the genera-
tive adversarial network to produce amino acid sequences of
proteins having the specified characteristics may be unsat-
isfactory. Thus, without a sufficient number of amino acid
sequences available to train a generative adversarial net-
work, the amino acid sequences produced by the generative
adversarial network may not have the desired characteris-
tics. By implementing the techniques and systems described
with respect to FIG. 4, a first generative adversarial network
402 can perform part of the process of determining amino
acid sequences that correspond to proteins or that corre-
spond to a broader class of proteins using a first dataset and
the second generative adversarial network 430 can perform
an additional part of the process where amino acid
sequences of proteins having more specific characteristics
are accurately and efficiently generated using a second,
different dataset.

[0080] In illustrative examples, the modified model 448
can produce amino acid sequences that correspond to anti-
bodies or portions of antibodies having particular charac-
teristics. For example, after the first generative adversarial
network 402 has produced the trained model 420 to generate
amino acid sequences that have characteristics of antibodies,
generally, the second generative adversarial network 430
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can produce the modified trained model 448 to produce
antibodies or portions of antibodies that have at least one of
specified biophysical characteristics, amino acid sequences
that correspond to antibodies or antibody regions related to
a germline gene, or amino acid sequences of antibodies that
have specified structural features, such as particular struc-
ture properties at specified locations. In particular illustra-
tive examples, the trained model 420 can be used to generate
amino acid sequences that correspond to IgG antibodies and
the modified trained model 448 can be used to generate
amino acid sequences that correspond to IgG antibodies
including light chains with variable regions having particu-
lar amino acids at specified positions. In additional illustra-
tive examples, the trained model 420 can be used to generate
amino acid sequences of heavy chains of antibodies and the
modified trained model 448 can be used to generate amino
acid sequences of heavy chains of antibodies that can form
disulfide bonds at specified positions.

[0081] While the illustrative example of FIG. 4 illustrates
the training of a model using multiple training sets in a
framework that includes two generative adversarial net-
works. in additional implementations, the training of a
model using multiple training datasets can also be repre-
sented using a single generative adversarial network. Fur-
ther, while the illustrative example of FIG. 4 illustrates the
training of a model using generative adversarial networks
with two training datasets, in various implementations, more
than two datasets can be used to train models using genera-
tive adversarial networks according to implementations
described herein.

[0082] FIG. 5 is a diagram illustrating an example frame-
work 500 to generate antibody sequences that are variants of
a parent antibody, in accordance with some implementa-
tions. The framework 500 can include a generative adver-
sarial network 502 that can include a generating component
504 and a challenging component 506. The generating
component 504 can implement a model to generate amino
acid sequences based on input provided to the generating
component 504. In various implementations, the model
implemented by the generating component 504 can include
one or more functions. In implementations, the generating
component 504 can utilize a model to produce generated
sequence(s) 508. In various examples, the generating com-
ponent 504 can implement a model to generate amino acid
sequences based on an input vector 510 provided to the
generating component 504 and a parent antibody sequence
512. The training input 510 can include a random or
pseudo-random sequence of numbers of a specified length.
The parent antibody sequence 512 can be provided to the
generating component 504 as a matrix having columns
corresponding to different amino acids and rows that corre-
spond to structure-based positions of proteins. For each
element in the matrix, a O can be used to indicate the absence
of an amino acid at the corresponding position and a 1 can
be used to indicate the presence of an amino acid at the
corresponding position. The matrix can also include an
additional column that represents a gap in an amino acid
sequence where there is no amino acid at a particular
position of the amino acid sequence. Thus, in situations
where a position represents a gap in an amino acid sequence,
a 1 can be placed in the gap column with respect to the row
associated with the position where an amino acid is absent.
The parent antibody sequence 512 can include a base
molecule that the generative adversarial network 502 can
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utilize to train a model to produce variant antibody
sequences that correspond to the parent antibody sequence
512.

[0083] The challenging component 506 can generate out-
put indicating whether the amino acid sequences produced
by the generating component 504 satisfy various character-
istics. In various implementations, the challenging compo-
nent 506 can be a discriminator. In additional situations,
such as when the generative adversarial network 502 is a
Wasserstein GAN, the challenging component 506 can
include a critic. In examples, the challenging component 506
can generate classification output 514 indicating whether the
amino acid sequences produced by the generating compo-
nent 504 satisfy various characteristics. In illustrative
examples, based on similarities and differences between the
generated sequence(s) 508 and additional sequences pro-
vided to the challenging component 506, such as amino acid
sequences included in antibody sequence data 516, the
challenging component 506 can generate the classification
output 514 to indicate an amount of similarity or an amount
of difference between the generated sequence(s) 508 and
sequences provided to the challenging component 506
included in the antibody sequence data 516. The antibody
sequence data 516 can include amino acid sequences of
antibodies that are obtained from one or more databases that
store antibody sequences. Additionally, the classification
output 514 can indicate an amount of similarity or an amount
of difference between the generated sequence(s) 508 and the
parent antibody sequence 512.

[0084] In examples, the challenging component 506 can
label the generated sequence(s) 508 as zero and the struc-
tured sequences obtained from the protein sequence data 516
as 1. The challenging component 506 can also label the
parent antibody sequence 512 as 1. In these situations, the
classification output 514 can include a first number from 0
to 1 with respect to one or more amino acid sequences
included in the antibody sequence data 516 and a second
number from 0 to 1 with respect to the parent antibody
sequence 512. In additional examples, the challenging com-
ponent 506 can implement a distance function that produces
an output that indicates an amount of distance between the
generated sequence(s) 508 and the proteins included in the
antibody sequence data 516. Further, the challenging com-
ponent 506 can implement a distance function that produces
an output that indicates an amount of distance between the
generated sequence(s) 508 and the parent antibody sequence
512. In implementations where the challenging component
506 implements a distance function, the classification output
514 can include a first number from —oo to oo indicating a
distance between the generated sequence(s) 508 and one or
more sequences included in the antibody sequence data 516
and a second number from —oo to oo indicating a distance
between the generated sequence(s) 508 and the parent
antibody sequence 512.

[0085] In various implementations, the classification out-
put 514 related to the amount of difference or the amount of
similarity between the generated sequence(s) 508 and the
parent antibody sequence 512 can be determined using a
penalty function. In particular implementations, the chal-
lenging component 506 can evaluate the generated sequence
(s) 508 with respect to the parent antibody sequence 512 in
relation to an amount of similarity between the generated
sequence(s) 508 and the parent antibody sequence 512
and/or an amount of dissimilarity between the generated
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sequence(s) 508 and the parent antibody sequence 512. In
examples, a first threshold amount of dissimilarity between
the generated sequence(s) 508 and the parent antibody
sequence 512 can be specified. Additionally, a second
threshold amount of similarity between the generated
sequence(s) 508 and the parent antibody sequence 512 can
be specified. The challenging component 506 can evaluate
the generated sequence(s) 508 in relation to the parent
antibody sequence 512 based on at least one of the first
threshold amount of dissimilarity or the second threshold
amount of similarity. In implementations, the challenging
component 506 can implement the penalty function based on
the amounts of similarity and/or dissimilarity between the
generated sequence(s) 508 and the parent antibody sequence
512 in relation to the first threshold and/or the second
threshold and utilize the output of the penalty function when
generating the portion of the classification output 514 that
corresponds to the parent antibody sequence 512 with
respect to the generated sequence(s) 508.

[0086] The antibody sequences included in the antibody
sequence data 516 can be subject to data preprocessing at
518 wherein the antibody sequences are mapped onto a
classification system 520 before being provided to the
challenging component 506. The classification system 520
can indicate that certain regions of antibodies are to be
represented by particular numbers of positions. For example,
a heavy chain variable region can be represented by 125 to
165 positions, such as 149 positions, within the classification
system 520. In other examples, a heavy chain constant
region can be represented by 110 to 140 positions, such as
123 positions, within the classification system 520. In addi-
tional examples, a hinge region of a heavy chain can be
represented by 110 to 140 positions, such as 123 positions,
within the classification system 520. In situations where an
amino acid sequence of an antibody does not include a
number of amino acids that corresponds to the specified
number of positions for a region of the antibody, the data
preprocessing at 518 can introduce a null value for one or
more positions in the classification system 520. In imple-
mentations, the null regions can correspond to gaps that can
indicate structural information of the antibodies. Thus, the
classification system 520 can accommodate variable num-
bers of amino acids included in various regions of an
antibody. Mapping the antibody sequences of at least a
portion of the antibody sequence data 516 onto the classi-
fication system 520 can generate a standardized dataset that
can be processed by the generative adversarial network 502
and that is independent of the number of amino acids
included in individual regions of the antibodies.

[0087] In illustrative examples, the mapping of antibody
sequences onto the classification system 520 taking place at
518 can include determining variable regions and constant
regions of the antibodies. The variable regions and the
constant regions of the antibodies can be determined by
comparing the amino acid sequences included in the anti-
body sequence data 516 with template amino acid sequences
that correspond to the various regions of the antibody. In
particular examples, a position specific scoring matrix
(PSSM) can be generated for each region type to determine
alignment between the portions of the antibody sequences
with the template amino acid sequences for the antibody
regions. In situations where a local alignment is determined
between an antibody sequence and a template sequence,
antibody sequences produced from germline genes can be
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used to further determine positioning of individual amino
acids of the antibody sequence within the classification
system 520.

[0088] After the sequences related to the germline genes
are used to identify a portion of an antibody sequence that
may correspond to a particular type of antibody region, an
amount of identity between a particular portion of an anti-
body sequence with a template sequence can be determined.
In situations where a minimum number of amino acids in a
given antibody sequence correspond to a template sequence
and/or where an amount of identity between a template
sequence and a given antibody sequence is at least a thresh-
old amount of identity, the given antibody sequence can be
classified as the particular region corresponding to the
template. In an example, a given antibody sequence can be
classified as being a complementarity determining region
(CDR) of a heavy chain of an antibody. Additionally, indi-
vidual antibody sequences that have been classified as being
related to a particular region can also be assigned a score that
can indicate a likelihood that a given antibody sequence
corresponds to the classification. Portions of antibody
sequences that have overlapping sequences can be filtered
by score such that the highest scoring portion of the antibody
sequence is assigned the classification. Gaps within the
antibody sequences can be determined in situations where
the number of amino acids for a given portion of an antibody
sequence that has a particular classification is less than the
number of positions assigned to classification in the classi-
fication system 520.

[0089] Although a particular classification system 520 has
been described with respect to the illustrative example of
FIG. 5, additional classification systems can be used in
addition to, or in the alternative, with respect to the classi-
fication system 520. For example, the Kabat classification
scheme, the Chotia classification scheme, the Martin clas-
sification scheme, the Gelfand classification scheme, the
IMGT classification scheme, the Aho classification scheme,
combinations thereof, and the like can be utilized to classify
amino acid sequences of antibodies included in the antibody
sequence data 516.

[0090] After the antibody sequence data 516 has been
mapped onto the classification system 520 at 518, mapped
sequence data 522 can be provided to the challenging
component 506. The mapped sequence data 522 can include
a matrix indicating the positions of amino acids for the
regions of an antibody and indicating the amino acids
associated with the individual positions. In situations where
a gap is present in the amino acid sequence with respect to
the classification system, a null value can be associated with
each amino acid included in the matrix.

[0091] After the generative adversarial network 502 has
undergone a training process, a trained model 524 can be
generated that can produce sequences of proteins. In
examples, the training process for the generative adversarial
network 502 can be complete after the function(s) imple-
mented by the generating component 504 converge. The
convergence of a function can be based on the movement of
values of model parameters toward particular values as
antibody sequences are generated by the generating compo-
nent 504 and feedback is obtained from the challenging
component 506. In various implementations, the training of
the generative adversarial network 502 can be complete
when the antibody sequences produced by the generating
component 504 have particular characteristics. To illustrate,
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the amino acid sequences generated by the generating com-
ponent 504 can be analyzed by a software tool that can
analyze amino acid sequences to determine at least one of
biophysical properties of the amino acid sequences, struc-
tural features of the amino acid sequences, or adherence to
amino acid sequences corresponding to one or more genes of
at least one antibody germline.

[0092] Sequence input 526 can be provided to the model
524, and the model 524 can produce antibody sequences
528. The sequence input 526 can correspond to random or
pseudo-random series of numbers having a specified length.
In various implementations, the antibody sequences 528 can
include variants of the parent antibody sequence 512. At
530, the antibody sequences 528 can be evaluated to deter-
mine whether the antibody sequences 528 have a specified
set of characteristics. The sequence evaluation 530 can
produce metrics 532 that indicate characteristics of the
antibody sequences 528. Additionally, the metrics 532 can
indicate an amount of correspondence between the charac-
teristics of the antibody sequences 528 and a specified set of
characteristics. In some examples, the metrics 532 can
indicate a number of positions of an amino acid sequence
528 that vary from an amino acid sequence derived from a
germline gene of an antibody.

[0093] FIG. 6 is a diagram illustrating an example frame-
work 400 to generate amino acid sequences of antibodies
that bind to a specified antigen, in accordance with some
implementations. The framework 600 can include a genera-
tive adversarial network 602 that can include a generating
component 604 and a challenging component 606. The
generative adversarial network 602 can include a conditional
generative adversarial network. The generating component
604 can implement a model to generate amino acid
sequences based on input provided to the generating com-
ponent 604. In various implementations, the model imple-
mented by the generating component 604 can include one or
more functions. In implementations, the generating compo-
nent 604 can utilize a model to produce generated sequence
(s) 608.

[0094] The generating component 604 can implement a
model to generate amino acid sequences based on an input
vector 610 provided to the generating component 604 and an
antigen sequence 612. The input vector 610 can include a
random or pseudo-random sequence of numbers of a speci-
fied length. The antigen sequence 612 can be provided to the
generating component 604 as a matrix having columns
corresponding to different amino acids and rows that corre-
spond to structure-based positions of proteins. For each
element in the matrix, a O can be used to indicate the absence
of an amino acid at the corresponding position and a 1 can
be used to indicate the presence of an amino acid at the
corresponding position. The matrix can also include an
additional column that represents a gap in an amino acid
sequence where there is no amino acid at a particular
position of the amino acid sequence. Thus, in situations
where a position represents a gap in an amino acid sequence,
a 1 can be placed in the gap column with respect to the row
associated with the position where an amino acid is absent.
The antigen sequence 612 can correspond to an antigen to
which antibodies having amino acid sequences produced by
the generating component 604 can bind. In various
examples, the antigen sequence 612 can correspond to an
antigen that has one or more epitope regions to which
antibodies can bind. In one or more examples, the generative
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adversarial network 602 can produce amino acid sequences
of antibodies to bind to the one or more epitope regions.

[0095] The challenging component 606 can generate out-
put indicating whether the amino acid sequences produced
by the generating component 604 have various characteris-
tics. In implementations, the challenging component 606 can
be a discriminator of the generative adversarial network 602.
The challenging component 606 can generate classification
output 614 indicating whether the amino acid sequences
produced by the generating component 604 satisfy one or
more criteria. In illustrative examples, based on similarities
and differences between the generated sequence(s) 608 and
additional sequences provided to the challenging component
606 as training data, such as amino acid sequences included
in the antibody-antigen sequence data 616, the challenging
component 606 can generate the classification output 614 to
indicate an amount of similarity or an amount of difference
between the generated sequence(s) 608 and sequences pro-
vided to the challenging component 606 from the antibody-
antigen interaction data 616.

[0096] The antibody-antigen interaction data 616 can be
obtained from one or more databases that store data related
to the binding of antibodies to antigens. The antibody-
antigen interaction data 616 can store amino acid sequences
of antibodies and amino acid sequences of the antigens that
are bound by the antibodies. The antibody-antigen interac-
tion data 616 can also include information regarding at least
one of secondary structures or tertiary structures of indi-
vidual antibodies and individual antigens. In various
examples, the antibody-antigen interaction data 616 can
include information corresponding to at least one of sec-
ondary structures or tertiary structures of individual anti-
bodies and individual antigens when they are bound to each
other. Additionally, the antibody-antigen interaction data
616 can include amino acid sequences of epitope regions of
antigens and amino acid sequences of corresponding binding
regions of antibodies and at least one of the binding strength
or the probability of binding by the various antibody regions
to the respective epitope regions. In illustrative examples,
the antibody-antigen interaction data 616 can indicate a
number of positions of antigens that bind to one or more
positions of the antibodies via non-covalent intermolecular
interactions/atomic interactions/chemical interactions, such
as van der Waals forces, hydrogen bonding, electrostatic
interactions, hydrophobic forces, combinations thereof, and
the like.

[0097] In illustrative examples, the portions of the anti-
body-sequence data 616 provided to the challenging com-
ponent 606 in relation to the antigen sequence 612 can
include amino acid sequences of antibodies that have at least
a minimum binding affinity with respect to the antigen
sequence 612. A binding affinity of a portion of an amino
acid sequence of an antibody with respect to the antigen
sequence 612 can be determined based on a binding affinity
of the portion of the amino acid sequence of the antibody
with respect to antigens that have at least a threshold
similarity with respect to the antigen sequence 612. For
example, the antigen sequence 612 can be compared to
amino acid sequences of antigens stored as part of the
antibody-antigen interaction data 616. Antigens having
amino acid sequences with at least a threshold amount of
identity in relation to the antigen sequence 612 can be
determined. Amino acid sequences of antibodies can then be
identified that bind to the antigens and these amino acid
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sequences can be sent as input to the challenging component
606. In additional examples, amino acid sequences of
epitope regions of antigens included in the antibody-antigen
interaction data 616 can be compared with the antigen
sequence 612. In these situations, epitope regions of anti-
gens included in the antibody-antigen interaction data 616
that have at least a threshold amount of identity with one or
more portions of the antigen sequence 612 can be deter-
mined. Antibodies that bind to these epitope regions can then
be identified and sent as input to the challenging component
606.

[0098] The challenging component 606 can produce clas-
sification output 614 that labels a generated sequence 608
based on an amount of correspondence between the gener-
ated sequence 608 and training data provided to the chal-
lenging component 606. The training data can include at
least a portion of the amino acid sequences included in the
antibody-antigen interaction data 616. The classification
output 614 can be based on a type of generative adversarial
network associated with the generative adversarial network
602. For example, for a first type of generative adversarial
network, the challenging component 606 can generate a
classification output 614 of 1 for a generated sequence 608
that has at least a threshold amount of correspondence with
respect to training data provided to the challenging compo-
nent 820. Also, for the first type of generative adversarial
network, the challenging component 606 can generate a
classification output of 0 for a generated sequence 608 that
has less than a threshold amount of correspondence with
respect to training data provided to the challenging compo-
nent 606. In various examples, for the first type of generative
adversarial network, the challenging component 606 can
generate classification output 614 that labels a generated
sequence 608 using a numerical scale from 0 to 1 based on
an amount of similarity between the generated sequence 608
and amino acid sequences included in training data provided
to the challenging component 606.

[0099] Additionally, in situations where the generative
adversarial network 602 implements a second type of gen-
erative adversarial network, such as a Wasserstein GAN, the
challenging component 606 can implement a distance func-
tion that produces a classification output 614 that indicates
an amount of distance between the generated sequences 608
and amino acid sequences included in training data provided
to the challenging component 606. For example, the chal-
lenging component 606 can produce a classification output
614 that includes a number from - to oo that indicates a
distance between a generated sequence 608 and at least a
portion of the amino acid sequences included in the anti-
body-antigen interaction data 616. In various examples, the
training data obtained from the antibody-antigen interaction
data 616 can be referred to as ground truth data.

[0100] The amino acid sequences obtained from the anti-
body-antigen interaction data 616 can be subject to data
preprocessing at 618. The amino acid sequences obtained
from the antibody-antigen interaction data 616 can include
at least one of amino acid sequences of antibodies or amino
acid sequences of antigens. The amino acid sequences can
be mapped onto a classification system as part of the data
preprocessing 618 before being provided to the challenging
component 606. For example, the classification system can
indicate that certain regions of antibodies are to be repre-
sented by particular numbers of positions. In illustrative
implementations, the classification system can be the same
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as or similar to the classification system 520 described with
respect to FIG. 5. In various examples, the Kabat classifi-
cation scheme, the Chotia classification scheme, the Martin
classification scheme, the Gelfand classification scheme, the
IMGT classification scheme, the Aho classification scheme,
combinations thereof, and the like can be utilized to classify
amino acid sequences of antibodies included in the anti-
body-antigen interaction data 616. Mapping at least a por-
tion of the amino acid sequences included in the antibody-
antigen interaction data 616 onto a classification system can
generate a standardized dataset that can be processed by the
generative adversarial network 602 and that is independent
of the number of amino acids included in individual regions
of the antibodies. After amino acid sequences obtained from
the antibody-antigen interaction data 616 have been through
the preprocessing 618. the antibody sequence data 620 that
corresponds to the amino acid sequences can be sent to the
challenging component 608.

[0101] Subsequent to the generative adversarial network
602 undergoing a training process, a trained model 622 can
be generated that can produce sequences of antibodies. In
examples, the training process for the generative adversarial
network 602 can be complete after the function(s) imple-
mented by the generating component 604 converge. The
convergence of a function can be based on the movement of
values of model parameters toward particular values as
antibody sequences are generated by the generating compo-
nent 604 and feedback is obtained from the challenging
component 606. In various implementations, the training of
the generative adversarial network 602 can be complete
when the antibody sequences produced by the generating
component 604 have particular characteristics. To illustrate,
the amino acid sequences generated by the generating com-
ponent 604 can be analyzed by a software tool that can
determine at least one of biophysical properties of the amino
acid sequences, structural features of the amino acid
sequences, or adherence to amino acid sequences corre-
sponding to one or more genes of at least one antibody
germline.

[0102] Sequence input 624 can be provided to the trained
model 622, and the trained model 622 can produce antibody
sequences 626. The sequence input 624 can correspond to a
random or pseudo-random series of numbers having a
specified length. In illustrative examples, the sequence input
624 can include the antigen sequence 612. In additional
examples, the sequence input 624 can include information
indicating interactions between at least portions of one or
more regions of one or more antibodies and portions of at
least one or more regions of one or more antigens. At 628,
the antibody sequences 626 can be evaluated to determine
whether the antibody sequences 626 have a specified set of
characteristics. For example, the sequence evaluation 628
can produce metrics 630 that indicate characteristics of the
antibody sequences 626. Additionally, the metrics 630 can
indicate an amount of correspondence between the charac-
teristics of the antibody sequences 626 and a specified set of
characteristics. The metrics 630 can also indicate character-
istics, such as a number of hydrophobic amino acids
included in an antibody 626 sequence, a number of posi-
tively charged amino acids included in an antibody sequence
626, a number of negatively charged amino acids included
in an antibody sequence 626, a measure of a biophysical
property of an antibody having an antibody sequence 626, a
level of expression of an antibody having an antibody
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sequence 626, or one or more combinations thereof. In some
examples, the metrics 630 can correspond to an amount of
binding by an antibody to an antigen, interactions between
an antibody and an antigen, an amount of interaction
between an antigen and an amino acid sequence of an
antibody derived from a germline gene.

[0103] FIG. 7 is a diagram illustrating an example frame-
work 700 to generate multiple libraries of proteins and to
combine the protein libraries to generate additional proteins,
in accordance with some implementations. The framework
700 can include a first generative adversarial network 702
and a second generative adversarial network 704. The first
generative adversarial network 702 can be trained and
generate a model based on first protein sequences 706.
Additionally, the second generative adversarial network 704
can be trained and generate an additional model based on
second protein sequences 708. In various implementations,
the first proteins sequences 706 and the second protein
sequences 708 can include the same amino acid sequences.
In additional implementations, the first protein sequences
706 can include at least one amino acid sequence that is
different from the second protein sequences 708.

[0104] The first generative adversarial network 702 can
produce a number of amino acid sequences of proteins that
are included in a first protein sequence library 710. In
addition, the second generative adversarial network 704 can
produce a number of amino acid sequences that are included
in a second protein sequence library 712. At least a portion
of the amino acid sequences included in the first protein
sequence library 710 can be different from the amino acid
sequences included in the second protein sequence library
712. At 714, the first protein sequence library 710 and the
second protein sequence library 712 can be combined to
produce combined protein sequences 716.

[0105] At 718, the combined protein sequences 716 can be
evaluated according to one or more criteria 720. For
example. the combined protein sequences can be evaluated
to determine whether the combined protein sequences 718
have particular regions of amino acid sequences, are asso-
ciated with amino acid sequences that have specified bio-
physical properties, and/or are associated with amino acid
sequences that have specified tertiary structures. In various
implementations, the combined protein sequences 716 can
be evaluated based on amino acid sequences of proteins
derived from genes of a germline.

[0106] After the combined protein sequences 716 have
been evaluated at 718, a combined protein sequence library
722 can be produced. The combined protein sequence
library 722 can include at least a portion of the combined
protein sequences 716. In particular implementations, the
combined protein sequences 716 can be filtered according to
the criteria 720 such that specified protein sequences
included in the combined protein sequences are included in
the combined protein sequence library.

[0107] In illustrative examples, the first protein sequence
library 710 can include amino acid sequences that corre-
spond to heavy chain regions of antibodies and the second
protein sequence library 712 can include amino acid
sequences that correspond to light chain regions of antibod-
ies. In these situations, the heavy chain regions and the light
chain regions can be combined to generate whole antibody
amino acid sequences including both heavy chain regions
and light chain regions. In various implementations, an
additional generative adversarial network can be generated

Jul. 21, 2022

that can combine the amino acid sequences corresponding to
the heavy chain regions with the amino acid sequences
corresponding to the light chain regions.

[0108] FIG. 8 is a diagram illustrating an additional
example framework 800 to generate amino acid sequences
of antibodies using separately generated amino acid
sequences of paired antibody heavy chains and light chains,
in accordance with some implementations. The framework
800 can include a generative adversarial network 802. The
generative adversarial network 802 can implement one or
more neural network technologies. For example, the gen-
erative adversarial network 802 can implement one or more
recurrent neural networks. Additionally, the generative
adversarial network 802 can implement one or more con-
volutional neural networks. In certain implementations, the
generative adversarial network 802 can implement a com-
bination of recurrent neural networks and convolutional
neural networks.

[0109] The generative adversarial network 802 can
include a light chain generating component 804 and a heavy
chain generating component 806. The light chain generating
component 804 can implement a first model to generate data
corresponding to amino acid sequences of light chains of
antibodies. In addition, the heavy chain generating compo-
nent 806 can implement a second model to generate data
corresponding to amino acid sequences of heavy chains of
antibodies. The light chain generating component 804 can
implement a first model to generate amino acid sequences of
light chains of antibodies based on first input data 808
provided to the light chain generating component 804. The
heavy chain generating component 806 can implement a
second model to generating amino acid sequences of heavy
chains of antibodies based on second input data 810. The
first input data 808 can include first noise data generated by
a random number generator or a pseudo-random number
generator. The second input data 810 can include second
noise data generated by a random number generator or a
pseudo-random number generator. In various implementa-
tions, the first model implemented by the light chain gen-
erating component 804 can include one or more first func-
tions that each include one or more first variables having
respective first weights. The second model implemented by
the heavy chain generating component 806 can include one
or more second functions that each include one or more
second variables having respective second weights.

[0110] The light chain generating component 804 can
implement a first model to produce light chain sequences
812 based on the first input data 808. The light chain
sequences 812 can comprise data corresponding to amino
acids that are located at positions of an antibody light chains.
The light chain sequences 812 can include sequences of
amino acids of antibody light chains that are encoded
according to one or more encoding schemes. In various
examples, the light chain sequences 812 can include data
corresponding to amino acids at individual positions of
antibody light chains that is encoded according to a schema.
In one or more illustrative examples, the light chain
sequences 812 can include amino acid sequences of anti-
body light chains that are encoded according to a one-hot
encoding scheme.

[0111] The heavy chain generating component 806 can
implement a second model to produce heavy chain
sequences 814 based on the second input data 810. The
heavy chain sequences 814 can comprise data corresponding
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to amino acids that are located at positions of antibody heavy
chains. The heavy chain sequences 814 can include
sequences of amino acids of antibody light chains that are
encoded according to one or more encoding schemes. In
various examples, the heavy chain sequences 814 can
include data corresponding to amino acids at individual
positions of antibody heavy chains that is encoded according
to a schema. In one or more illustrative examples, the heavy
chain sequences 814 can include amino acid sequences of
antibody heavy chains that are encoded according to a
one-hot encoding scheme.

[0112] The light chain sequences 812 and the heavy chain
sequences 814 can be provided to a sequence combining
component 816. The sequence combining component 816
can combine at least one light chain sequence 812 and at
least one heavy chain sequence 814 to generate a combined
antibody sequence 818. In various implementations, the
sequence combining component 816 can combine a single
light chain sequence 812 with a single heavy chain sequence
814. A combined antibody sequence 818 can include data
corresponding to amino acids located at positions of one or
more light chain sequences 812 and one or more heavy chain
sequences 814. In one or more examples, the sequence
combining component 816 can generate a combined anti-
body sequence 818 by concatenating one or more light chain
sequences 812 and one or more heavy chain sequences 814.
For example, the sequence combining component 816 can
add a first string of alphanumeric characters representative
of an antibody light chain sequence to a second string of
alphanumeric characters representative of an antibody heavy
chain sequence to generate a combined antibody sequence
818. The combined antibody sequence 818 can include a
first portion that corresponds to a light chain sequence 812
and a second portion that corresponds to a heavy chain
sequence 814. For example, a first number of positions of a
combined antibody sequence 818 can correspond to amino
acids of a light chain sequence 812 and a second number of
positions of the combined antibody sequence 818 that are
after the first number of positions can correspond to a heavy
chain sequence 814. In additional examples, a first number
of positions of a combined antibody sequence 818 can
correspond to amino acids of a heavy chain sequence 814
and a second number of positions of the combined antibody
sequence 818 that are after the first number of positions can
correspond to a light chain sequence 812. In various imple-
mentations, the combined antibody sequence 818 can cor-
respond to amino acids of one or more light chain sequences
812 and one or more heavy chain sequences 814 arranged
according to a schema.

[0113] The generative adversarial network 802 can
include a challenging component 820. The challenging
component 820 can generate output indicating that the
combined antibody sequences 818 satisfy or do not satisfy
one or more characteristics. The challenging component 820
can produce classification output 822 that can be provided to
the light chain generating component 804 and the heavy
chain generating component 806. The challenging compo-
nent 820 can evaluate the combined antibody sequences 818
with respect to training data that comprises the antibody
sequence data 824. The challenging component 820 can
compare the combined antibody sequences 818 generated by
the sequence combining component 816 with at least a
portion of the amino acid sequences included in the antibody
sequence data 824. The classification output 822 generated
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based on the comparisons can indicate an amount of corre-
spondence between a combined antibody sequence 818 with
respect to at least a portion of the amino acid sequences
included in the antibody sequence data 824. For example,
based on similarities and differences between a combined
antibody sequence 818 and at least a portion of the amino
acid sequences included in the antibody sequence data 824,
the classification output 822 generated by the challenging
component 820 can indicate an amount of similarity or an
amount of difference between the combined antibody
sequence 818 and at least a portion of the amino acid
sequences included in the antibody sequence data 824.

[0114] The challenging component 820 can produce clas-
sification output 822 that labels a combined antibody
sequence 818 based on an amount of correspondence
between the combined antibody sequence 818 and training
data provided to the challenging component 820. The train-
ing data can include at least a portion of the amino acid
sequences included in the antibody sequence data 824. The
classification output 822 can be based on a type of genera-
tive adversarial network associated with the generative
adversarial network 802. For example, for a first type of
generative adversarial network, the challenging component
820 can generate a classification output 822 of 1 for a
combined antibody sequence 818 that has at least a threshold
amount of correspondence with respect to training data
provided to the challenging component 820. Also, for the
first type of generative adversarial network, the challenging
component 820 can generate a classification output of 0 for
a combined antibody sequence 818 that has less than a
threshold amount of correspondence with respect to training
data provided to the challenging component 820. In various
examples, for the first type of generative adversarial net-
work, the challenging component 820 can generate classi-
fication output 822 that labels a combined antibody
sequence 818 using a numerical scale from 0 to 1 based on
an amount of similarity between the combined antibody
sequence 818 and amino acid sequences included in training
data provided to the challenging component 820.

[0115] Additionally, in situations where the generative
adversarial network 802 implements a second type of gen-
erative adversarial network, such as a Wasserstein GAN, the
challenging component 820 can implement a distance func-
tion that produces a classification output 822 that indicates
an amount of distance between the combined antibody
sequences 818 and amino acid sequences included in train-
ing data provided to the challenging component 820. For
example, the challenging component 820 can produce a
classification output 822 that includes a number from —oo to
oo that indicates a distance between a combined antibody
sequence 818 and at least a portion of the amino acid
sequences included in the antibody sequence data 824. In
various examples, the training data obtained from the anti-
body sequence data 824 can be referred to as ground truth
data.

[0116] The amino acid sequences included in the antibody
sequence data 824 can be subject to data preprocessing 826
before being provided to the challenging component 820. In
implementations, the data preprocessing 826 can include
arranging the antibody sequence data 824 according to a
classification system before being provided to the challeng-
ing component 820. For example, the data preprocessing
826 can include pairing amino acids included in the amino
acid sequences of the antibody sequence data 824 with
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numerical values that can represent structure-based posi-
tions within the antibodies. The numerical values can
include a sequence of numbers having a starting point and an
ending point. In an illustrative example, a T can be paired
with the number 43 indicating that a Threonine molecule is
located at a structure-based position 43 of a specified
antibody.

[0117] The output produced by the data preprocessing 826
can include structured sequences 828. The structured
sequences 828 can include a matrix indicating amino acids
associated with various positions of an antibody. In
examples, the structured sequences 828 can include a matrix
having columns corresponding to different amino acids and
rows that correspond to structure-based positions of anti-
bodies. For each element in the matrix, a 0 can be used to
indicate the absence of an amino acid at the corresponding
position and a 1 can be used to indicate the presence of an
amino acid at the corresponding position. In situations
where a position represents a gap in an amino acid sequence,
the row associated with the position can comprise zeroes for
each column. The combined antibody sequence(s) 818 can
also be represented using a vector according to a same or
similar number scheme as used for the structured sequences
828. In some illustrative examples, the structured sequences
828 and the combined antibody sequence(s) 818 can be
encoded using a method that may be referred to as a one-hot
encoding method. In various implementations, the struc-
tured sequences 828 can include an amino acid sequence of
an antibody light chain followed by an amino acid sequence
of an antibody heavy chain. In additional implementations,
the structured sequences 828 can include an amino acid
sequence of an antibody heavy chain followed by an amino
acid sequence of an antibody light chain. The arrangement
of antibody light chains and antibody heavy chains in the
structured sequences 828 can correspond to the arrangement
of antibody light chains and antibody heavy chains included
in the combined antibody sequences 818.

[0118] In various examples, training of the light chain
generating component 804 and the heavy chain generating
component 806 can take place asynchronously. For example,
the training of the heavy chain component 806 may cease for
a period of time while training of the light chain generating
component 804 continues. In one or more examples, the
light chain generating component 804 and the heavy chain
generating component 806 can train concurrently for a
period of time. During this period of time, the training of the
heavy chain generating component 806 may progress faster
than training of the light chain generating component 804. In
these situations, the training of the heavy chain generating
component 806 may cease for a period of time that the light
chain generating component 804 continues to train. In some
examples, sequences generated by the heavy chain generat-
ing component 806 may be evaluated at various points in
time to determine a metric with regard to quality of the
amino acid sequences generated by the heavy chain gener-
ating component 806. In various examples, the training of
the heavy chain generating component 806 may cease when
the metric satisfies one or more threshold metrics. The light
chain generating component 804 may continue to train until
the sequences produced by the light chain generating com-
ponent 804 satisfy the one or more threshold metrics. After
sequences from both the light chain generating component
804 and the heavy chain generating component 806 satisfy
the one or more threshold metrics, the light chain generating
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component 804 and the heavy chain generating component
806 can continue to train. In one or more examples, training
of the light chain generating component 804 and the heavy
chain generating component 806 can train until one or more
metrics used to evaluate the sequences produced by the light
chain generating component 804 and the heavy chain gen-
erating component 806 diverge by at least a threshold
amount.

[0119] Inone or more illustrative examples, the training of
the heavy chain generating component 806 can implement
hobbled weights such that the training of the light chain
generating component 804 and the training of the heavy
chain generating component 806 proceed at relatively simi-
lar rates. Additionally, the training of the heavy chain
generating component 806 may proceed with slower gradi-
ents such that the training of the light chain generating
component 804 and the training of the heavy chain gener-
ating component 806 proceed at relatively similar rates.

[0120] After the generative adversarial network 802 has
undergone a training process, a trained model 830 can be
generated that can produce amino acid sequences of anti-
bodies. The trained model 830 can include the light chain
generating component 804 and the heavy chain generating
component 806 after a training process using the antibody
sequence data 824. In examples, the training process for the
generative adversarial network 802 can be complete after the
classification output 822 indicates at least a threshold
amount of correspondence between the combined antibody
sequences 818 and the amino acid sequences included in the
antibody sequence data 824. In additional implementations.
the training of the generative adversarial network 802 can be
complete when the combined antibody sequences 818 have
particular characteristics. To illustrate, the amino acid
sequences generated by the sequence combining component
816 can be analyzed by a software tool that can analyze
amino acid sequences to determine at least one of biophysi-
cal properties of the amino acid sequences, structural fea-
tures of the amino acid sequences, or adherence to amino
acid sequences corresponding to one or more protein ger-
mlines. The characteristics of the combined antibody
sequences 818 determined by the analysis of the software
tool in relation to specified characteristics can be used to
determine whether or not the training of the generative
adversarial network 802 is complete.

[0121] Sequence input 832 can be provided to the trained
model 830. and the trained model 830 can produce a
combined antibody sequence library 834. The sequence
input 832 can correspond to random or pseudo-random
series of numbers that can be used to produce the combined
antibody sequence library 834. The combined antibody
sequence library 834 can include amino acid sequences of
antibodies that include at least one light chain and at least
one heavy chain that correspond to the individual antibodies
included in the combined antibody sequence library 834.
The amino acid sequences included in the combined anti-
body sequence library 834 that are produced by the trained
model 830 can be represented as a matrix structure that is the
same as or similar to the matrix structure used to represent
the structured sequences 828 and/or the combined antibody
sequence(s) 818. In various implementations, the matrices
produced by the trained model 830 that comprise the amino
acid sequences included in the combined antibody sequence
library 834 can be decoded to produce a string of amino
acids that correspond to the sequence of an antibody.
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[0122] In some implementations, the amino acid
sequences included in the combined antibody sequence
library 834 can be subject to one or more filtering opera-
tions. The one or more filtering operations can parse the
amino acid sequences included in the combined antibody
sequence library for one or more of the sequences that
correspond to one or more specified characteristics. For
example, the amino acid sequences included in the com-
bined antibody sequence library 834 can be analyzed to
identify sequences that have specified amino acids at par-
ticular positions. The amino acid sequences included in the
combined antibody sequence library 834 can also be ana-
lyzed to identify one or more sequences that have one or
more particular strings of amino acids at one or more
locations. In various implementations, the amino acid
sequences included in the combined antibody sequence
library 834 can be analyzed to identify one or more
sequences that have a set of biophysical properties based on
similarities between at least one of the sequences included in
the combined antibody sequence library 834 and amino acid
sequences of additional antibodies that are known to have
the set of biophysical properties.

[0123] In one or more implementations, amino acid
sequences generated by the trained model 830 and/or amino
acid sequences generated during the training of the light
chain generating component 804 and the heavy chain gen-
erating component 806 may be evaluated according to one
or more criteria. For example, amino acid sequence gener-
ated the trained model 830 and/or amino acid sequences
generated during the training of the light chain generating
component 804 and the heavy chain generating component
806 may be evaluated based on at least one of agreement
with amino acid sequences produced in relation to one or
more germline genes, a measure of immunogenicity of the
amino acid sequences, or agreement with CDR H3 amino
acid sequences. A PCA model may be used to determine
when to stop training at least one of the light chain gener-
ating component 804 or the heavy chain generating com-
ponent 806 in relation to correspondence with CDR H3
regions. In various examples, the measure of immunogenic-
ity can correspond to MHC Class II binding affinity.

[0124] FIG. 9 is a diagram illustrating a framework 900
that implements the use of transfer learning techniques to
generate amino acid sequences of antibodies from amino
acid sequences of paired antibody heavy chains and light
chains, in accordance with some implementations. The
framework 900 can include a first generative adversarial
network 902. The first generative adversarial network 902
can include a first light chain generating component 904, a
first heavy chain generating component 906, a first chal-
lenging component 908, and a first sequence combining
component 910. In various implementations, the first chal-
lenging component 908 can be a discriminator. The first light
chain generating component 904 can implement a model to
generate amino acid sequences of antibody light chains
based on input provided to the first light chain generating
component 904. The first heavy chain generating component
906 can implement a model to generate amino acid
sequences of antibody heavy chains based on input provided
to the first heavy chain generating component 906. The first
light chain generating component 904 and the first heavy
chain generating component 906 can use input data 912 to
generate amino acid sequences. The input data 912 can
include a vector produced using a random number generator
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or a pseudo-random number generator. In illustrative
examples, the input data 912 can include a noise signal that
includes a series of numbers.

[0125] The first sequence combining component 910 can
combine amino acid sequences generated by the first light
chain generating component 904 with amino acid sequences
generated by the first heavy chain generating component 906
to produce combined antibody sequences. The first sequence
combining component 910 can provide the combined anti-
body sequences to the first challenging component 908. The
first challenging component 908 can then generate output
indicating whether the combined antibody sequences satisfy
various characteristics. The output produced by the first
challenging component 908 can be provided as feedback to
at least one of the first light chain generating component 904
and the first heavy chain generating component 906. In this
way, one or more models implemented by the first light
chain generating component 904 and/or the first heavy chain
generating component 906 can be modified based on the
feedback provided by the first challenging component 908.
In various implementations, the first challenging component
908 can compare the amino acid sequences produced by the
first sequence combining component 910 with amino acid
sequences of antibodies that correspond to training data for
the first generative adversarial network 902 and generate an
output indicating an amount of correspondence between the
amino acid sequences produced by the first sequence com-
bining component 910 and the amino acid sequences of
antibodies included in the training data. The training data
can include antibody sequence data 914. The antibody
sequence data 914 can correspond to amino acid sequences
of'a number of antibodies. For a given antibody, the antibody
sequence data 914 can include a pairing of an antibody light
chain and an antibody heavy chain. In illustrative examples,
the antibody sequence data 914 can include amino acid
sequences of antibodies produced by one or more mammals.
The antibody sequence data 914 can also include amino acid
sequences of one or more isotypes of classes of antibodies,
such as IgA antibodies, IgD antibodies, IgE antibodies, IgG
antibodies, and/or IgM antibodies.

[0126] The first generative adversarial network 902 can be
trained in a same or similar manner described with respect
to the generative adversarial network 802 of FIG. 6. For
example, at least a portion of the antibody sequence data 914
can be fed into the first challenging component 908 and
compared against output produced by the first sequence
combining component 910. The output produced by the first
sequence combining component 910 can be based on amino
acid sequences of antibody light chains generated by the first
light chain generating component 904 and amino acid
sequences of antibody heavy chains generated by the first
heavy chain generating component 906. A trained model 916
can be produced in response to iteratively determining
parameters and/or weights with respect to one or more
functions implemented by at least one of the first light chain
generating component 904 or the first heavy chain generat-
ing component 906. To illustrate, the trained model 916 can
include a trained light chain generating component 918 and
a trained heavy chain generating component 920.

[0127] In various examples, the amino acid sequences
generated by the trained model 916 can be refined further. To
illustrate, the trained model 916 can be modified by being
subjected to another training process using a different set of
training data than the training data used in the initial training
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process. For example, the data used for additional training of
the trained model 916 can include a subset of the data used
to initially produce the trained model 916. In additional
examples, the data used for additional training of the trained
model 916 can include a different set of data than the data
used to initially produce the trained model 916. In illustra-
tive examples, the trained model 916 can be further refined
to generate amino acid sequences of antibodies having one
or more specified attributes. The one or more specified
attributes can include values of one or more biophysical
properties and/or one or more levels of expression. In these
scenarios, the trained model 916 can be further trained using
a training dataset that includes amino acid sequences of
antibodies that have the one or more specified attributes.

[0128] Inthe illustrative example of FIG. 9, the refinement
of the trained model 916 can be represented by training a
second generative adversarial network 922 that includes the
training model 916. For example, the second generative
adversarial network 922 can include a second light chain
generating component 924 that initially corresponds to the
trained light chain generating component 918 and a second
heavy chain generating component 926 that initially corre-
sponds to the trained heavy chain generating component
920. In various implementations, the second light chain
generating component 924 can include the trained light
chain generating component 918 after one or more modifi-
cations have been made to the trained light chain generating
component 918. Additionally, the second heavy chain gen-
erating component 926 can include the trained heavy chain
generating component 920 after one or more modifications
have been made to the trained heavy chain generating
component 920. For example, modifications can be made to
the trained light chain generating component 918 in relation
to the architecture of the trained light chain generating
component 918, such as the addition of one or more hidden
layers or changes to one or more network filters. The second
generative adversarial network 922 can also include a sec-
ond sequence combining component 928 and a second
challenging component 930. The second challenging com-
ponent 930 can include a discriminator.

[0129] First additional input data 932 can be provided to
the second light chain generating component 924 and the
second light chain generating component 924 can produce
one or more light chain sequences 934. The first additional
input data 932 can include a random or pseudo-random
sequence of numbers that the second light chain generating
component 924 uses to produce the light chain sequences
934. Further, second additional input data 936 can be
provided to the second heavy chain generating component
926 and the second heavy chain generating component 926
can produce one or more heavy chain sequences 938. The
second additional input data 932 can include a random or
pseudo-random sequence of numbers that the second heavy
chain generating component 926 uses to produce the heavy
chain sequences 938. The second sequence combining com-
ponent 928 can combine one or more light chain sequences
934 with one or more heavy chain sequences 938 to produce
one or more combined sequences 940. The one or more
combined sequences 940 can correspond to amino acid
sequences of antibodies that include at least one light chain
and at least one heavy chain.

[0130] The second challenging component 930 can gen-
erate classification output 942 indicating that the amino acid
sequences included in the combined sequences 940 satisty
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various characteristics or that the amino acid sequences
included in the combined sequences 940 do not satisfy
various characteristics. In illustrative examples, the second
challenging component 930 can generate the classification
output 942 based on similarities and differences between one
or more combined sequences 940 and amino acid sequences
provided to the second challenging component 930 as train-
ing data. The classification output 942 can indicate an
amount of similarity or an amount of difference between the
combined sequences 940 and the training data amino acid
sequences provided to the second challenging component
930.

[0131] The amino acid sequences provided to the second
challenging component 930 as training data can be included
in additional antibody sequence data 944. The additional
antibody sequence data 944 can include amino acid
sequences of proteins that have one or more specified
characteristics. For example, the additional antibody
sequence data 944 can include amino acid sequences of
antibodies having a threshold level of expression in humans.
In additional examples, the additional antibody sequence
data 944 can include amino acid sequences of antibodies
having one or more biophysical properties and/or one or
more structural properties. To illustrate, the antibodies
included in the additional antibody sequence data 944 can
have negatively charged regions, hydrophobic regions, a
relatively low probability of aggregation, a specified per-
centage of high molecular weight (HMW), melting tempera-
ture, one or more combinations thereof, and the like. In one
or more additional examples, the additional antibody
sequence data 944 may include binding affinity information
that can be used in transfer learning. In one or more
illustrative examples, the additional antibody sequence data
944 can correspond to antibodies that have at least a thresh-
old amount of binding affinity with respect to one or more
molecules, such as MHC Class II molecules. In various
examples, the additional antibody sequence data 944 can
include a subset of the antibody sequence data 914 used to
produce the trained model 916. By providing amino acid
sequences to the second challenging component 930 that
have one or more specified characteristics, the second light
chain generating component 924 and the second heavy chain
generating component 926 can be trained to produce amino
acid sequences of antibodies that have at least a threshold
probability of having the one or more specified character-
istics.

[0132] Additionally, in many situations where it is desired
to produce amino acid sequences of antibodies having one or
more specified characteristics, the number of sequences
available to train a generative adversarial network can be
limited. In these situations, the accuracy, efficiency, and/or
effectiveness of the generative adversarial network to pro-
duce amino acid sequences of antibodies having the speci-
fied characteristics may be unsatisfactory. Thus, without a
sufficient number of amino acid sequences available to train
a generative adversarial network, the amino acid sequences
produced by the generative adversarial network may not
have the desired characteristics. By implementing the tech-
niques and systems described with respect to FIG. 9, a first
generative adversarial network 902 can perform part of the
process of training a model to produce antibodies having the
one or more specified characteristics and the second gen-
erative adversarial network 922 can perform additional
training to generate amino acid sequences of antibodies
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having the one or more specified characteristics in an
accurate and efficient manner.

[0133] Before being provided to the second challenging
component 930, the amino acid sequences included in the
additional antibody sequence data 944 can be subject to data
preprocessing 946 that produces structured sequences 948.
For example, the additional protein sequence data 944 can
be arranged according to a classification system before being
provided to the second challenging component 930. The data
preprocessing 946 can include pairing amino acids included
in the amino acid sequences of antibodies included in the
additional protein sequence data 944 with numerical values
that can represent structure-based positions within the anti-
bodies. The combined sequence(s) 940 can also be repre-
sented using a vector according to a same or similar number
scheme as used for the structured sequences 948.

[0134] After the second generative adversarial network
922 has undergone a training process, a modified trained
model 950 can be generated that can produce amino acid
sequences of antibodies. The modified trained model 950
can represent the trained model 916 after being trained using
the additional protein sequence data 944. Additional
sequence input 952 can be provided to the modified trained
model 950, and the modified trained model 950 can produce
antibody sequences 954. The additional sequence input 952
can include a random or pseudo-random series of number. In
additional implementations, the antibody sequences 954 can
be evaluated to determine whether the antibody sequences
954 have a specified set of characteristics. The evaluation of
the antibody sequences 954 can produce metrics that indi-
cate characteristics of the antibody sequences 954, such as
biophysical properties of an antibody, biophysical properties
of a region of an antibody, and/or the presence or absence of
amino acids located at specified positions of an antibody.
[0135] While the illustrative example of FIG. 9 illustrates
the training of a model using multiple training sets in a
framework that includes two generative adversarial net-
works. in additional implementations, the training of a
model using multiple training datasets can also be repre-
sented using a single generative adversarial network. Fur-
ther, while the illustrative example of FIG. 9 illustrates the
training of a model using generative adversarial networks
with two training datasets, in various implementations, more
than two datasets can be used to train models using one or
more generative adversarial networks according to imple-
mentations described herein.

[0136] Additionally, although the illustrative example of
FIG. 9 shows that the second generative adversarial network
922 uses the trained model 916 having a light chain gener-
ating component 918 that is separate from a trained heavy
chain generating component 920, in additional implemen-
tations, the trained model 916 used by the second generative
adversarial network 922 as the generating component can be
a single generating component that can be used to generate
amino acid sequences that include both light chains and
heavy chains. In these implementations, the second genera-
tive adversarial network 922 can include a single generating
component instead of both a second light chain generating
component 924 and a second heavy chain generating com-
ponent 926 and the second sequence combining component
928 can be absent from the second generative adversarial
network 922. In various implementations, a single generat-
ing component can be implemented by the second genera-
tive adversarial network 922 instead of a separate light chain
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generating component and a heavy chain generating com-
ponent in scenarios where interactions between amino acids
of the light chains and the heavy chains introduce one or
more complexities that are more efficiently captured using a
generative adversarial network having a single generating
component. Further, in one or more implementations, addi-
tional layers can be added to the second generative adver-
sarial network 922 to generate amino acid sequences of
antibodies. In various implementations, one or more addi-
tional layers can be added to the second generative adver-
sarial network 922 after, or as part of, the second sequence
combining component 928 to generate the combined
sequences 940.

[0137] FIG. 10 is a diagram illustrating a framework 1000
for the concatenation of amino acid sequences of antibody
heavy chains and light chains, in accordance with some
implementations. The framework 1000 can include a light
chain generating component 1002 that generates data cor-
responding to a first amino acid sequence 1004 of a light
chain of an antibody. The light chain generating component
1002 can be part of a generative adversarial network. In
addition, the light chain generating component 1002 can
implement one or more first models to produce data corre-
sponding to amino acid sequences of antibody light chains.
The one or more first models can include one or more
functions having one or more variables, one or more param-
eters, one or more weights, or one or more combinations
thereof. The light chain generating component 1002 can
produce the data corresponding to amino acid sequences of
antibody light chains based on input data obtained by the
light chain generating component 1002. The input data can
include numerical data produced by a random number
generator or a pseudo-random number generator.

[0138] The framework 1000 can also include a heavy
chain generating component 1006 that generates data cor-
responding to a second amino acid sequence 1008 of a heavy
chain of an antibody. The heavy chain generating component
1006 can be a part of a generative adversarial network. In
various implementations, the heavy chain generating com-
ponent 1006 can implement one or more second models to
produce data corresponding to amino acid sequences of
antibody heavy chains. The one or more second models can
include one or more additional functions having one or more
variables, one or more parameters, one or more weights, or
one or more combinations thereof. The heavy chain gener-
ating component 1006 can produce the data corresponding
to amino acid sequences of antibody heavy chains based on
additional input data obtained by the heavy chain generating
component 1006. The additional input data can include
numerical data produced by a random number generator or
a pseudo-random number generator.

[0139] Additionally, the framework 1000 can include a
concatenation component 1010 that combines the first amino
acid sequence 1004 and the second amino acid sequence
1008 to produce data corresponding to a third amino acid
sequence 1012. The concatenation component 1010 can
append the second amino acid sequence 1008 onto the first
amino acid sequence 1004. For example, the first amino acid
sequence 1004 can include a first string of letters with each
letter in the first string indicating an amino acid located at a
respective position of a light chain of an antibody. Further,
the second amino acid sequence 1008 can include a second
string of letters with each letter in the second string indi-
cating an amino acid located at a respective position of a
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heavy chain of an antibody. The third amino acid sequence
1012 generated by the concatenation component 1010 can
include a third string of letters that is produced by adding the
second string of letters included in the second amino acid
sequence 1008 after a last letter of the first string of letters
included in the first amino acid sequence 1004. To illustrate,
the first amino acid sequence 1004 terminates in VESG and
the second amino acid sequence 1008 begins with EIQM.
The concatenation component 1010 can combine the first
amino acid sequence 1004 with the second amino acid
sequence 1008 by adding the second amino acids sequence
1008 starting with EIQM after the VESG of the first amino
acid sequence 1004. In this way, the third amino acid
sequence 1012 includes a number of amino acids that
corresponds to a combination of a first number of amino
acids included in the first amino acid sequence 1004 and a
second number of amino acids included in the second amino
acid sequence 1008.

[0140] The third amino acid sequence 1012 can be pro-
vided to a challenging component 1014 that can evaluate the
third amino acid sequence 1012 against training data 1016.
The challenging component 1014 can be included in a
generative adversarial network. In illustrative examples, the
challenging component 1014 can be a discriminator of a
generative adversarial network. The training data 1016 can
include amino acid sequences of antibodies. The amino acid
sequences included in the training data 1016 can correspond
to antibodies that are produced by various organisms and
that have been analyzed to determine the amino acid
sequences of the antibodies. In various examples, the train-
ing data 1016 can include at least one of amino acid
sequences of antibody light chains, amino acid sequences of
antibody heavy chains, or amino acid sequences of combi-
nations of antibody light chains with antibody heavy chains.
By evaluating the amino acid sequences generated by the
concatenation component 1010. such as the third amino acid
sequence 1012. in relation to the training data 1016, the
challenging component 1014 can generate classification
output 1018. The classification output 1018 can correspond
to a measure of similarity between the third amino acid
sequence 1012 and the amino acid sequences included in the
training data 1016.

[0141] In various examples, the classification output 1018
can be provided to at least one of the light chain generating
component 1002 or the heavy chain generating component
1006. The light chain generating component 1002 and/or the
heavy chain generating component 1006 can utilize the
classification output 1018 to modify one or more models
implemented by the light chain generating component 1002
and/or the heavy chain generating component 1006. In this
way, the one or more models implemented by the light chain
generating component 1002 and/or the heavy chain gener-
ating component 1006 can be modified to generate amino
acid sequences of antibody light chains and/or antibody
heavy chains that correspond to the amino acid sequences
included in the training data 1016.

[0142] In one or more scenarios, the framework 1000 can
include one or more additional computation layers 1020.
The additional computation layers 1020 can modify output
from the concatenation component 1016 before the output
from the concatenation component 1010 is provided to the
challenging component 1014. In various examples, the addi-
tional computation layers 1020 can be a part of the concat-
enation component 1010. The additional computation layers
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1020 can be utilized in situations where relationships
between amino acid sequences and one or more biophysical
properties are not accounted for by the concatenation com-
ponent 1010. Additionally, the one or more additional com-
putation layers 1020 can be utilized in situations where
nonlinear relationships are present between the heavy chain
amino acid sequences and the light chain amino acid
sequences produced by the light chain generating compo-
nent 1002 and the heavy chain generating component 1006.
Further, the one or more additional computation layers 1020
can be utilized in scenarios where there are various inter-
actions between the first amino acid sequence 1004 and the
second amino acid sequence 1008 that can be captured by
the one or more additional computation layers 1020.
[0143] FIGS. 11-14 illustrate example methods for gener-
ating amino acid sequences of proteins using machine
learning techniques. The example processes are illustrated
as collections of blocks in logical flow graphs, which
represent sequences of operations that can be implemented
in hardware, software, or a combination thereof. The blocks
are referenced by numbers. In the context of software, the
blocks represent computer-executable instructions stored on
one or more computer-readable media that, when executed
by one or more processing units (such as hardware micro-
processors), perform the recited operations. Generally, com-
puter-executable instructions include routines, programs,
objects, components, data structures, and the like that per-
form particular functions or implement particular data types.
The order in which the operations are described is not
intended to be construed as a limitation, and any number of
the described blocks can be combined in any order and/or in
parallel to implement the process.

[0144] FIG. 11 is a flow diagram illustrating another
example method 1100 for producing protein sequences, in
accordance with some implementations. At 1102, the
method 1100 includes obtaining a training dataset that
includes amino acid sequences of proteins. The training
dataset can be obtained by extracting amino acid sequences
of proteins from one or more databases. In various imple-
mentations, the amino acid sequences included in the train-
ing dataset can correspond to proteins that have one or more
characteristics. For example, the amino acid sequences
included in the training dataset can have one or more
structural features. In additional examples, the amino acid
sequences included in the training dataset can have one or
more biophysical properties. In further examples, the amino
acid sequences included in the training dataset can have one
or more regions that include specified amino acid sequences.
[0145] At 1104, the method 1100 includes generating
encoded amino acid sequences based on the training dataset.
In wvarious implementations, the encoded amino acid
sequences can be produced by applying a classification
system to the amino acid sequences included in the training
dataset. In examples, the classification system can identify
one or more regions of the amino acid sequences. Addition-
ally, generating the encoded amino acid sequences can
include generating a matrix for each amino acid sequence
that indicates the amino acids included at the individual
positions of the individual amino acid sequences.

[0146] At 1106, the method 1100 includes generating a
model to produce additional amino acid sequences that
correspond to the amino acid sequences included in the
training set. The model can be generated using the encoded
amino acid sequences produced from the training dataset. In
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addition, a generative adversarial network can be used to
generate the model. In various implementations, the model
can be used to produce amino acid sequences of proteins that
have one or more characteristics that are the same as or
similar to at least one characteristic of the proteins corre-
sponding to the amino acid sequences included in the
training dataset.

[0147] At 1108, the method 1100 can include generating
the additional amino acid sequences using the model and an
input vector. In examples, the input vector can include a
series of random or pseudo-random numbers. Further, at
1110, the method 1100 can include evaluating the additional
amino acid sequences according to one or more criteria to
determine metrics for the additional amino acid sequences.
The techniques and operations utilized to evaluate the addi-
tional amino acid sequences can be different from those
utilized by the generative adversarial network to generate
the model. In implementations, computer-readable instruc-
tions, such as those associated with a software tool or
software platform, can be executed to evaluate the additional
amino acid sequences. The additional amino acid sequences
can be evaluated to determine whether proteins correspond-
ing to the additional amino acid sequences have one or more
specified characteristics. In particular implementations, the
additional amino acid sequences can be evaluated to deter-
mine a number of variations of the individual additional
amino acid sequences from amino acid sequences of pro-
teins derived from germline genes.

[0148] FIG. 12 is a flow diagram illustrating another
example method 1200 for producing antibody sequences, in
accordance with some implementations. At 1202, the
method 1200 includes obtaining a training dataset including
amino acid sequences of antibodies. The amino acid
sequences can be obtained from one or more databases that
store amino acid sequences of antibodies.

[0149] At 1204, the method 1200 includes generating a
model to produce additional amino acid sequences of anti-
bodies that have one or more characteristics that are similar
to characteristics of antibodies of the training dataset. The
model can be produced using a generative adversarial net-
work. In implementations, the additional amino acid
sequences can correspond to antibodies having one or more
specified structural features. Further, the additional amino
acid sequences can correspond to antibodies having one or
more biophysical features. In still additional examples, the
additional amino acid sequences can correspond to amino
acid sequences of antibodies derived from germline genes.
[0150] At 1206, the method 1200 can include generating
the additional amino acid sequences using the model and an
input vector. In various scenarios, the input vector can
include a random or pseudo-random series of numbers
having a specified length. The model can obtain the input
vector and use the input vector to produce output that
corresponds to amino acid sequences of antibodies.

[0151] FIG. 13 is a flow diagram illustrating an example
method 1300 to produce amino acid sequences of proteins
that bind to a specified target molecule, in accordance with
some implementations. The method 1300 can include, at
operation 1302, obtaining first data indicating a composition
of a target molecule. The target molecule can correspond to
a protein for which proteins that bind to the target molecule
are being generated. The composition of the target molecule
can correspond to an arrangement of atoms that comprise the
target molecule. In various examples, the composition of the
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target molecule can include an arrangement of sub-groups of
atoms that comprise the target molecule. For example, the
target molecule can comprise a protein and the composition
of the target molecule can be comprised of a sequence of
amino acids. In illustrative examples, the target molecule
can include an antigen and the method 1300 can be directed
to generating amino acid sequences of antibodies that bind
to the antigen. In additional illustrative examples, the target
molecule can include a substrate and the method 1300 can
be directed to generating amino acid sequences of enzymes
that bind to the substrate.

[0152] In addition, at 1304, the method 1300 can include
obtaining second data indicating binding interactions
between individual first proteins of a group of first proteins
and one or more additional molecules. The second data can
include data that has been derived experimentally and indi-
cates binding between the first proteins and the one or more
additional molecules. In various examples, the second data
can be simulated and derived computationally to indicate
binding between the first proteins and the one or more
additional molecules. The binding interactions can include
at least one of a binding affinity or a binding avidity. In
various examples, the binding interactions can indicate a
sequence of amino acids included in a binding region of an
antibody and an additional amino acid sequence of an
epitope region of an antigen, where the binding region has
at least a threshold amount of binding interaction with the
epitope region. Additionally, the binding interactions can
indicate couplings between amino acids included in the
binding region and additional amino acids located in the
epitope region. In illustrative examples, the second data can
include equilibrium constants between individual proteins
and one or more additional molecules. To illustrate, the
second data can include equilibrium dissociation constants
between individual first proteins and the one or more addi-
tional molecules. The second data can indicate that an
individual first protein can bind to a single additional
molecule. The second data can also indicate that an indi-
vidual first protein can bind to multiple additional mol-
ecules. Further, the second data can indicate that multiple
first proteins can bind to a single additional molecule.

[0153] In various implementations, the second data can
indicate the portions of the first proteins and the portions of
the additional molecules where the binding takes place. For
example, the second data can indicate the atoms of the first
proteins that participate in binding interactions with atoms
of the additional molecules. In situations where the addi-
tional molecules comprise proteins, the second data can
indicate the amino acids of the first proteins and the amino
acids of the additional molecules that participate in binding
interactions. Further, in additional implementations, the first
proteins can comprise antibodies and the additional mol-
ecules can comprise antigens. In these scenarios, the second
data can indicate the amino acids included in one or more
binding regions of individual first proteins and the amino
acids included in one or more epitope regions of individual
antigens.

[0154] The second data can also indicate structural fea-
tures of the first proteins and the additional molecules that
participate in binding interactions. To illustrate, the second
data can indicate functional groups of the first proteins and
functional groups of additional molecules that participate in
binding interactions. Additionally, in situations where the
additional molecules include proteins, the second data can
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indicate at least one of secondary structures or tertiary
structures of the first proteins and the additional molecules
that participate in binding interactions. In illustrative
examples, the second data can indicate structures that are
part of binding interactions, such as sheets, helices, bends,
coils, turns, bridges, loops, or one or more combinations
thereof.

[0155] Further, at 1306, the method 1300 can include
determining a composition of an additional molecule that
has at least a threshold amount of similarity with respect to
at least a portion of the composition of the target molecule.
An amount of similarity between the target and an additional
molecule can be determined by determining a number of one
or more atoms included in the target molecule and the
additional molecule and comparing the number of atoms.
For example, the number of carbon atoms included in the
target molecule and the number of carbon atoms included in
the additional molecule can be determined can compared
with each other. Continuing with this example, the amount
of difference between the number of carbon atoms included
in the target molecule and the number of carbon atoms in the
additional molecule can correspond to an amount of simi-
larity between the target molecule and the additional mol-
ecule.

[0156] Additionally, the amount of similarity between the
target molecule and the additional molecule can be deter-
mined by determining functional groups of the target mol-
ecule and the additional molecule and comparing the num-
ber and/or location of one or more types of functional groups
included in the target molecule and the additional molecule.
In these situations, an amount of similarity between the
target molecule and the additional molecule can be based on
differences between the number of one or more functional
groups of the additional molecule and the target molecule.
For example, an amount of similarity between the target
molecule and the additional molecule can be based on a
difference between a number of aldehyde groups included in
the target molecule and a number of aldehyde groups
included in the additional molecule. In another example, a
number of aromatic groups included in the target molecule
and a number of aromatic groups included in the additional
molecule can be used to determine an amount of similarity
between the target molecule and the additional molecule.
Differences and/or similarities between locations of func-
tional groups can also be used to determine an amount of
similarity between the target molecule and the additional
molecule. To illustrate, carboxyl groups located at carbon
positions 2 and 10 of the target molecule can be compared
with the locations of carboxyl groups of the additional
molecule. Continuing with this example, an amount of
similarity between the target molecule and the additional
molecule can be based on whether or not the carboxyl
groups of the additional molecule are also located at posi-
tions 2 and 10.

[0157] In scenarios where the target molecule and the
additional molecule are proteins, an amount of similarity
between the target molecule and the additional molecule can
be determined by comparing amino acids at individual
positions of the amino acid sequence of the target molecule
and the amino acid sequence of the additional molecule. In
implementations, individual amino acids located at each
position of the amino acid sequence of the target molecule
can be compared with individual amino acids at each
position of the amino acid sequence of the additional mol-
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ecule. In additional implementations, individual amino acids
located at positions of one or more regions of the target
molecule can be compared with individual amino acids
located at positions of one or more regions of the additional
molecule that correspond to the one or more regions of the
target molecule. For example, amino acids located in an
epitope region of the target molecule can be compared with
amino acids located in one or more regions of the additional
molecule that can correspond to the epitope region. The
number of positions of at least a portion of the amino acid
sequence of the target molecule that have amino acids that
are the same as at least a corresponding portion of the amino
acid sequence of the additional molecule can correspond to
an amount of identity between the target molecule and the
additional molecule. In these situations, the amount of
similarity between the additional molecule and the target
molecule can correspond to an amount of identity between
the amino acid sequences of one or more portions of the
additional molecule and the target molecule.

[0158] Although the amount of similarity between the
target molecule and the additional molecule have been
described with respect to various examples, the amount of
similarity between the target molecule and the additional
molecule can be determined based on one or more combi-
nations of a number of criteria. For example, an amount of
similarity between the target molecule and the additional
molecule can be determined by analyzing at least one of a
number of one or more atoms included in the target molecule
and the additional molecule, a number of bonding arrange-
ments (e.g., single bonds, double bonds, triple bonds)
included in the target molecule and the additional molecule,
a number of one or more functional groups included in the
target molecule and the additional molecule, locations of
secondary structural features of the target molecule and the
additional molecule, amino acids included in secondary
structural features of the target molecule and the additional
molecule, tertiary structure of the target molecule and the
additional molecule, or identity with respect to one or more
regions of the target molecule and the additional molecule.

[0159] Threshold amounts of similarity between the addi-
tional molecule and the target molecule can be based on a
likelihood that a protein that binds to the target molecule
also binds to the additional molecule. In implementations
where the target molecule and the additional molecule are
antigens, a threshold amount of similarity can correspond to
a minimum amount of identity between one or more regions
of the target molecule and one or more regions of the
additional molecule. In illustrative examples, a threshold
amount of similarity between the target molecule and the
additional molecule can correspond to a minimum amount
of identity between an epitope region of the target molecule
with respect to one or more regions of the additional
molecule.

[0160] At 1308, the method 1300 can include determining
a subset of the group of first proteins that have at least a
threshold amount of binding interaction with the additional
molecule. The threshold amount of binding interaction can
correspond to a maximum value of an equilibrium dissocia-
tion constant. In these situations, determining the subset of
the group of first proteins can include determining an
equilibrium dissociation constant between individual first
proteins and the additional molecule. The equilibrium dis-
sociation constants can then be compared against the thresh-
old equilibrium dissociation constant. In situations where an
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equilibrium dissociation constant is less than the threshold
equilibrium dissociation constant, the corresponding first
protein can be added to the subset of the group of first
proteins.

[0161] Additionally, at 1310, the method 1300 can include
generating a model using a generative adversarial network to
produce additional amino acid sequences of additional pro-
teins having at least a threshold amount of binding interac-
tion with the target molecule. The generative adversarial
network can include a generating component that produces
amino acid sequences of antibodies based on an antigen
sequence. The generating component can use an input vector
that includes noise data produced by a random number
generator or a pseudo-random number generator to produce
the amino acid sequences. The amino acid sequences pro-
duced by the generating component can be evaluated by a
challenging component of the generative adversarial net-
work. The challenging component can be a discriminator.
The challenging component can evaluate the amino acid
sequences produced by the generating component with
respect to antibody amino acid sequences that have at least
a threshold amount of binding to antigens that have at least
a threshold amount of similarity with respect to a target
antigen. For example, the challenging component can ana-
lyze the amino acid sequence produced by the generating
component with respect to the amino acid sequences of
subset of the group of first proteins having at least a
threshold amount of binding interaction with the additional
molecule determined at operation 1308. The model can
include one or more functions having one or more variables
with individual variables having respective weights.

[0162] The process 1300 can also include, at 1312, gen-
erating, using the model, a plurality of second amino acid
sequences of second proteins that correspond to the target
molecule. For example, the target molecule can include an
antigen and the model can be used to generate amino acid
sequences of antibodies that have at least a threshold prob-
ability of having at least a threshold binding interaction with
respect to the antigen. In illustrative examples, the model
can be used to generate amino acid sequences of antibodies
that have at least a threshold equilibrium dissociation con-
stant in relation to the antigen.

[0163] FIG. 14 is a flow diagram illustrating an example
method 1400 to produce amino acid sequences of antibodies
by combining separately generated amino acid sequences of
antibody heavy chains and light chains, in accordance with
some implementations. The method 1400 can include, at
1402, generating, using a generative adversarial network,
first data corresponding to a plurality of first amino acid
sequences related to antibody light chains. The generative
adversarial network can include a first generating compo-
nent that implements a first model to generate the plurality
of first amino acid sequences. The first model can include a
first function having one or more first variables and one or
more first weights. The antibody light chains can include at
least one of variable regions or constant regions of light
chains of antibodies. In addition, the antibody light chains
can include complentarity-determining regions (CDRs) of
light chains of antibodies. The generative adversarial net-
work can use input data to generate the plurality of first
amino acid sequences. The input data can include a numeri-
cal string produced by a random number generator or a
pseudo-random number generator.
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[0164] At 1404, the method 1400 can include generating,
using the generative adversarial network, a plurality of
second amino acid sequences corresponding to antibody
heavy chains. The generative adversarial network can also
include a second generating component that implements a
second model to generate the plurality of second amino acid
sequences. The second model can include a second function
that is different from the first function. The second function
can include one or more second variables and one or more
second weights. The antibody heavy chains can include at
least one of variable regions or constant regions of heavy
chains of antibodies. The antibody heavy chains can also
include CDRs of heavy chains of antibodies. The generative
adversarial network can use additional input data to generate
the plurality of second amino acid sequences. The additional
input data can include a numerical string produced by a
random number generator or a pseudo-random number
generator.

[0165] At 1406, the method 1400 can include combining,
using the generative adversarial network, a first amino acid
sequence with a second amino acid sequence to produce a
third amino acid sequence of an antibody that includes a
light chain amino acid sequence and a heavy chain amino
acid sequence. The first amino acid sequence can be com-
bined with the second amino acid sequence by concatenating
the second amino acid sequence to the first amino acid
sequence. In one or more examples, the first amino acid
sequence, the second amino acid sequence, and the third
amino acid sequence can be encoded according to a classi-
fication system.

[0166] At 1408, the method 1400 can include analyzing,
by the generative adversarial network, the third amino acid
sequence with respect to additional amino acid sequences
included in training data. The third amino acid sequence can
be analyzed by a discriminator and the output can be
provided to at least one of the first generating component or
the second generating component. For example, based on
the output by the discriminator, the first generating compo-
nent can modify the first model used to generate the first
amino acid sequence. In addition, based on the output by the
discriminator, the second generating component can modify
the second model used to generate the second amino acid
sequence. In this way, the output from the discriminator can
be used as feedback by at least one of the first generating
component or the second generating component to generate
amino acid sequences that are more likely to correspond to
the additional amino acid sequences included in the training
data.

[0167] The output produced by the discriminator over time
can be indicative of an amount of progress in the training of
the first model and in the training of the second model. After
the training of the first model is complete, a first trained
model can be used to generate amino acid sequences of
antibody light chains and after the training of the second
model is complete, a second trained model can be used to
generate amino acid sequences of antibody heavy chains.
The amino acid sequences produced by the first trained
model and the second trained model can be combined and
the combined amino acid sequences can be analyzed by a
software tool. The software tool can determine one or more
metrics with respect to the combined amino acid sequences.
To illustrate, the one or more metrics can include at least one
of a number of hydrophobic amino acids, a number of
positively charged amino acids, a number of negatively
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charged amino acids, a number of uncharged amino acids, a
level of expression, a melting temperature, or a level of
self-aggregation.

[0168] In addition, the first trained model and the second
trained model can undergo further training using additional
training data that is different from the initial training data
used to produce the first trained model and the second
trained model. For example, the additional training data can
include amino acid sequences of antibodies having one or
more characteristics. To illustrate, the additional training
data can include amino acid sequences of antibodies having
negatively charged regions, hydrophobic regions, a rela-
tively low probability of aggregation, a specified percentage
of high molecular weight (HMW), melting temperature, a
threshold level of expression, or one or more combinations
thereof. In these implementations, the output from a dis-
criminator of the generative adversarial network that is
based on the additional training data can be used to further
modify the models implemented by the first generating
component and the second generating component such that
the amino acid sequences produced by the generative adver-
sarial network can correspond to the amino acid sequences
of antibodies included in the additional training data.
[0169] FIG. 15 is an example of a scheme to structurally
align amino acid sequences of antibodies for input to a
generative machine learning architecture, in accordance
with some implementations. The structure of FIG. 15 cor-
responds to the application of a classification system to a
heavy chain domain of an antibody. In one or more illus-
trative examples, the classification system can allocate 149
positions to encode the variable region of the heavy chain of
an antibody. Additionally, the classification system used to
produce the structure 1500 in the illustrative example of
FIG. 15 can allocate 123 positions to encode the constant
regions of the heavy chain of the antibody. Further, the
classification system used to produce the structure 1500 in
the illustrative example of FIG. 15 can allocate 123 positions
to encode a hinge region of the heavy chain of the antibody.
[0170] Amino acids that are associated with individual
positions of the amino acid sequence may be represented by
letters in the structure 1500. Additionally, positions that are
not associated with any amino acid may be represented in
the structure 1500. Gaps in the amino acid sequence related
to the structure 1500 can indicate structure of the antibody
that corresponds to the structure shown in FIG. 15.

[0171] In the illustrative example of FIG. 15, the structure
1500 can include a first region 1702 from a first position to
a second position that includes amino acids of a first heavy
chain framework region and a second region 1704 from the
second position to the third position that includes amino
acids of a first heavy chain CDR. In addition, the structure
1500 can include a third region 1706 from the third position
to a fourth position that includes amino acids of a second
heavy chain framework region and a fourth region 1708
from the fourth position to a fifth position that includes
amino acids of a second heavy chain CDR. Further, the
structure 1500 can include a fifth region 1710 from the fifth
position to a sixth position that includes amino acids of a
third heavy chain framework region and a sixth region 1712
from the sixth position to a seventh position that includes
amino acids of a third CDR. The structure 1500 can also
include a seventh region 1714 from the seventh position to
an eighth position that includes amino acids of a fourth
heavy chain framework region and an eighth region 1716
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from the eighth position to a ninth position that includes
amino acids of a first heavy chain constant region. Addi-
tionally, the structure 1500 may include a ninth region 1718
from the ninth position to a tenth position that includes a
hinge region of the heavy chain of the antibody. In various
examples, the structure 1500 may include a tenth region
1720 from the tenth position to an eleventh position that
includes a second heavy chain constant region and an
eleventh region 1722 from the eleventh position to a twelfth
position that includes amino acids of a third heavy chain
constant region. Each region of the structure may include a
predetermined number of locations and at least a portion of
the locations may be associated with a particular amino acid.

[0172] FIG. 16 illustrates a diagrammatic representation
of'a machine 1600 in the form of a computer system within
which a set of instructions may be executed for causing the
machine 1600 to perform any one or more of the method-
ologies discussed herein, according to an example, accord-
ing to an example embodiment. Specifically, FIG. 16 shows
a diagrammatic representation of the machine 1600 in the
example form of a computer system, within which instruc-
tions 1624 (e.g., software, a program, an application, an
applet, an app, or other executable code) for causing the
machine 1600 to perform any one or more of the method-
ologies discussed herein may be executed. For example, the
instructions 1624 may cause the machine 1600 to implement
the frameworks 100, 200, 300, 400, 500, 600, 700, 800
described with respect to FIGS. 1,2, 3,4,5,6,7, 8,9, and
10 respectively, and to execute the methods 1100, 1200,
1300, 1400 described with respect to FIGS. 11, 12, 13, and
14 respectively. Additionally, the encoding shown in FIG. 15
can be generated using the machine 1600 using instructions
1824.

[0173] The instructions 1824 transform the general, non-
programmed machine 1600 into a particular machine 1600
programmed to carry out the described and illustrated func-
tions in the manner described. In alternative embodiments,
the machine 1600 operates as a standalone device or may be
coupled (e.g., networked) to other machines. In a networked
deployment, the machine 1600 may operate in the capacity
of a server machine or a client machine in a server-client
network environment, or as a peer machine in a peer-to-peer
(or distributed) network environment. The machine 1600
may comprise, but not be limited to, a server computer, a
client computer, a personal computer (PC), a tablet com-
puter, a laptop computer, a netbook, a set-top box (STB), a
personal digital assistant (PDA). an entertainment media
system, a cellular telephone, a smart phone, a mobile device,
a wearable device (e.g., a smart watch), a smart home device
(e.g., a smart appliance), other smart devices, a web appli-
ance, a network router, a network switch, a network bridge,
or any machine capable of executing the instructions 1624.
sequentially or otherwise, that specify actions to be taken by
the machine 1600. Further, while only a single machine
1600 is illustrated, the term “machine” shall also be taken to
include a collection of machines 1600 that individually or
jointly execute the instructions 1016 to perform any one or
more of the methodologies discussed herein.

[0174] Examples of computing device 1600 can include
logic, one or more components, circuits (e.g., modules), or
mechanisms. Circuits are tangible entities configured to
perform certain operations. In an example, circuits can be
arranged (e.g., internally or with respect to external entities
such as other circuits) in a specified manner. In an example,
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one or more computer systems (e.g., a standalone, client or
server computer system) or one or more hardware proces-
sors (processors) can be configured by software (e.g.,
instructions, an application portion, or an application) as a
circuit that operates to perform certain operations as
described herein. In an example, the software can reside (1)
on a non-transitory machine readable medium or (2) in a
transmission signal. In an example, the software, when
executed by the underlying hardware of the circuit, causes
the circuit to perform the certain operations.

[0175] In an example, a circuit can be implemented
mechanically or electronically. For example, a circuit can
comprise dedicated circuitry or logic that is specifically
configured to perform one or more techniques such as
discussed above, such as including a special-purpose pro-
cessor, a field programmable gate array (FPGA) or an
application-specific integrated circuit (ASIC). In an
example, a circuit can comprise programmable logic (e.g.,
circuitry, as encompassed within a general-purpose proces-
sor or other programmable processor) that can be temporar-
ily configured (e.g., by software) to perform the certain
operations. It will be appreciated that the decision to imple-
ment a circuit mechanically (e.g., in dedicated and perma-
nently configured circuitry), or in temporarily configured
circuitry (e.g., configured by software) can be driven by cost
and time considerations.

[0176] Accordingly, the term “circuit” is understood to
encompass a tangible entity, be that an entity that is physi-
cally constructed, permanently configured (e.g., hardwired),
or temporarily (e.g., transitorily) configured (e.g., pro-
grammed) to operate in a specified manner or to perform
specified operations. In an example, given a plurality of
temporarily configured circuits, each of the circuits need not
be configured or instantiated at any one instance in time. For
example, where the circuits comprise a general-purpose
processor configured via software, the general-purpose pro-
cessor can be configured as respective different circuits at
different times. Software can accordingly configure a pro-
cessor, for example, to constitute a particular circuit at one
instance of time and to constitute a different circuit at a
different instance of time.

[0177] In an example, circuits can provide information to,
and receive information from, other circuits. In this example,
the circuits can be regarded as being communicatively
coupled to one or more other circuits. Where multiple of
such circuits exist contemporaneously, communications can
be achieved through signal transmission (e.g., over appro-
priate circuits and buses) that connect the circuits. In
embodiments in which multiple circuits are configured or
instantiated at different times, communications between
such circuits can be achieved, for example, through the
storage and retrieval of information in memory structures to
which the multiple circuits have access. For example, one
circuit can perform an operation and store the output of that
operation in a memory device to which it is communica-
tively coupled. A further circuit can then, at a later time,
access the memory device to retrieve and process the stored
output. In an example, circuits can be configured to initiate
or receive communications with input or output devices and
can operate on a resource (e.g., a collection of information).
[0178] The various operations of method examples
described herein can be performed, at least partially, by one
or more processors that are temporarily configured (e.g., by
software) or permanently configured to perform the relevant
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operations. Whether temporarily or permanently configured,
such processors can constitute processor-implemented cir-
cuits that operate to perform one or more operations or
functions. In an example, the circuits referred to herein can
comprise processor-implemented circuits.

[0179] Similarly, the methods described herein can be at
least partially processor-implemented. For example, at least
some of the operations of a method can be performed by one
or processors or processor-implemented circuits. The per-
formance of certain of the operations can be distributed
among the one or more processors, not only residing within
a single machine, but deployed across a number of
machines. In an example, the processor or processors can be
located in a single location (e.g., within a home environ-
ment, an office environment or as a server farm), while in
other examples the processors can be distributed across a
number of locations.

[0180] The one or more processors can also operate to
support performance of the relevant operations in a “cloud
computing” environment or as a “software as a service”
[0181] (SaaS). For example, at least some of the opera-
tions can be performed by a group of computers (as
examples of machines including processors), with these
operations being accessible via a network (e.g., the Internet)
and via one or more appropriate interfaces (e.g., Application
Program Interfaces (APIs).)

[0182] Example embodiments (e.g., apparatus, systems, or
methods) can be implemented in digital electronic circuitry,
in computer hardware, in firmware, in software, or in any
combination thereof. Example embodiments can be imple-
mented using a computer program product (e.g., a computer
program, tangibly embodied in an information carrier or in
a machine readable medium, for execution by, or to control
the operation of, data processing apparatus such as a pro-
grammable processor, a computer, or multiple computers).
[0183] A computer program can be written in any form of
programming language, including compiled or interpreted
languages, and it can be deployed in any form, including as
a stand-alone program or as a software module, subroutine,
or other unit suitable for use in a computing environment. A
computer program can be deployed to be executed on one
computer or on multiple computers at one site or distributed
across multiple sites and interconnected by a communication
network.

[0184] Inan example, operations can be performed by one
or more programmable processors executing a computer
program to perform functions by operating on input data and
generating output. Examples of method operations can also
be performed by, and example apparatus can be imple-
mented as, special purpose logic circuitry (e.g., a field
programmable gate array (FPGA) or an application-specific
integrated circuit (ASIC)).

[0185] The computing system can include clients and
servers. A client and server are generally remote from each
other and generally interact through a communication net-
work. The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client-server relationship to each other. In
embodiments deploying a programmable computing system,
it will be appreciated that both hardware and software
architectures require consideration. Specifically, it will be
appreciated that the choice of whether to implement certain
functionality in permanently configured hardware (e.g., an
ASIC), in temporarily configured hardware (e.g., a combi-
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nation of software and a programmable processor), or a
combination of permanently and temporarily configured
hardware can be a design choice. Below are set out hardware
(e.g., computing device 1600) and software architectures
that can be deployed in example embodiments.

[0186] In an example, the computing device 1600 can
operate as a standalone device or the computing device 1600
can be connected (e.g., networked) to other machines.
[0187] In a networked deployment, the computing device
1600 can operate in the capacity of either a server or a client
machine in server-client network environments. In an
example, computing device 1600 can act as a peer machine
in peer-to-peer (or other distributed) network environments.
The computing device 1600 can be a personal computer
(PC). a tablet PC, a set-top box (STB), a Personal Digital
Assistant (PDA), a mobile telephone, a web appliance, a
network router, switch or bridge, or any machine capable of
executing instructions (sequential or otherwise) specifying
actions to be taken (e.g., performed) by the computing
device 1600. Further, while only a single computing device
1600 is illustrated, the term “computing device” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.

[0188] Example computing device 1600 can include a
processor 1602 (e.g., a central processing unit CPU), a
graphics processing unit (GPU) or both), a main memory
1804 and a static memory 1806, some or all of which can
communicate with each other via a bus 1608. The computing
device 1600 can further include a display unit 1610, an
alphanumeric input device 1612 (e.g., a keyboard), and a
user interface (UI) navigation device 1814 (e.g., a mouse).
In an example, the display unit 1610, input device 1612 and
UT navigation device 1814 can be a touch screen display.
The computing device 1600 can additionally include a
storage device (e.g., drive unit) 1616, a signal generation
device 1618 (e.g., a speaker), a network interface device
1620, and one or more sensors 1621, such as a global
positioning system (GPS) sensor, compass, accelerometer,
or other sensor.

[0189] The storage device 1616 can include a machine
readable medium 1622 on which is stored one or more sets
of data structures or instructions 1624 (e.g., software)
embodying or utilized by any one or more of the method-
ologies or functions described herein. The instructions 1624
can also reside, completely or at least partially, within the
main memory 1604, within static memory 1606, or within
the processor 1602 during execution thereof by the comput-
ing device 1600. In an example, one or any combination of
the processor 1602, the main memory 1604, the static
memory 1606, or the storage device 1616 can constitute
machine readable media.

[0190] While the machine readable medium 1622 is illus-
trated as a single medium, the term “machine readable
medium” can include a single medium or multiple media
(e.g., a centralized or distributed database, and/or associated
caches and servers) that configured to store the one or more
instructions 1624. The term “machine readable medium”
can also be taken to include any tangible medium that is
capable of storing, encoding, or carrying instructions for
execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
disclosure or that is capable of storing, encoding or carrying
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data structures utilized by or associated with such instruc-
tions. The term “machine readable medium” can accord-
ingly be taken to include, but not be limited to, solid-state
memories, and optical and magnetic media. Specific
examples of machine-readable media can include non-vola-
tile memory, including, by way of example, semiconductor
memory devices (e.g., Electrically Programmable Read-
Only Memory

[0191] (EPROM), Electrically Erasable Programmable
Read-Only Memory (EEPROM)) and flash memory
devices; magnetic disks such as internal hard disks and
removable disks; magneto-optical disks; and CD-ROM and
DVD-ROM disks.

[0192] The instructions 1624 can further be transmitted or
received over a communications network 1626 using a
transmission medium via the network interface device 1820
utilizing any one of a number of transfer protocols (e.g.,
frame relay, 1P, TCP, UDP, HTTP, etc.). Example commu-
nication networks can include a local area network (LAN),
a wide area network (WAN), a packet data network (e.g., the
Internet), mobile telephone networks (e.g., cellular net-
works), Plain Old Telephone (POTS) networks, and wireless
data networks (e.g., IEEE 802.11 standards family known as
Wi-Fi®, IEEE 802.16 standards family known as WiMax®),
peer-to-peer (P2P) networks, among others. The term “trans-
mission medium” shall be taken to include any intangible
medium that is capable of storing, encoding or carrying
instructions for execution by the machine, and includes
digital or analog communications signals or other intangible
medium to facilitate communication of such software.

Example Implementations

[0193] 1. Amethod comprising: obtaining, by a computing
system including one or more computing devices having one
or more processors and memory, first data indicating a first
amino acid sequence of a first antigen; obtaining, by the
computing system, second data indicating binding interac-
tions between individual antibodies of a first plurality of
antibodies and one or more antigens; determining, by the
computing system, a second amino acid sequence of a
second antigen of the one or more antigens that has at least
a threshold amount of identity with respect to at least a
portion of the first amino acid sequence of the first antigen;
determining, by the computing system and based on the
second data, a group of the first plurality of antibodies
included in the second data that have at least a first threshold
amount of binding interaction with the second antigen;
generating, by the computing system and using a generative
adversarial network, a model to produce additional amino
acid sequences of additional antibodies having at least a
threshold probability of having at least a second threshold
amount of binding interaction with the first antigen, wherein
the model is generated based on the first amino acid
sequence of the first antigen and the group of the first
plurality of antibodies; and generating, by the computing
system, and using the model, a second plurality of amino
acid sequences of antibodies that correspond to the first
antigen.

[0194] 2. The method of 1, wherein the binding interac-
tions include at least one of a binding affinity or a binding
avidity.

[0195] 3. The method of 1 or 2, wherein: the binding
interactions indicate an amino acid sequence of a binding
region of an antibody of the first plurality of antibodies and
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an additional amino acid sequence of an epitope region of an
antigen of the one or more antigens, and the binding region
binds to the epitope region.

[0196] 4. The method of 3, wherein the binding interac-
tions indicate couplings between amino acids included in the
binding region and additional amino acids included in the
epitope region.

[0197] 5. The method of any one of 1-4, wherein the
binding interactions include equilibrium constants between
the individual antibodies of a first plurality of antibodies and
the one or more antigens.

[0198] 6. The method of any one of 1-5, further compris-
ing evaluating, by the computing system and using a soft-
ware tool, one or more metrics with respect to the second
plurality of amino acid sequences of antibodies, the one or
more metrics including at least one of a number of hydro-
phobic amino acids included in individual amino acid
sequences of the second plurality of amino acid sequences,
a number of positively charged amino acids included in
individual amino acid sequences of the second plurality of
amino acid sequences, a number of negatively charged
amino acids included in individual amino acid sequences of
the second plurality of amino acid sequences, a number of
uncharged amino acids included in individual amino acid
sequences of the second plurality of amino acid sequences,
a level of expression of individual antibodies, a melting
temperature of individual antibodies, or a level of self-
aggregation of individual antibodies.

[0199] 7. A method comprising: obtaining, by a computing
system including one or more computing devices having one
or more processors and memory, first data indicating a
composition of a target molecule; obtaining, by the com-
puting system, second data indicating binding interactions
between individual first proteins of a plurality of first
proteins and one or more additional molecules; determining,
by the computing system, a composition of an additional
molecule of the one or more additional molecules that has at
least a threshold amount of similarity with respect to at least
a portion of the composition of the target molecule; deter-
mining, by the computing system and based on the second
data, a group of the plurality of first proteins included in the
second data that have at least a first threshold amount of
binding interaction with the additional molecule; generating,
by the computing system and using a generative adversarial
network, a model to produce additional amino acid
sequences of additional proteins having at least a threshold
probability of having at least a second threshold amount of
binding interaction with the target molecule, wherein the
model is generated based on the composition of the target
molecule and the group of the plurality of first proteins; and
generating, by the computing system, and using the model,
a plurality of second amino acid sequences of second
proteins that correspond to the target molecule.

[0200] 8. The method of 7, wherein the target molecule
includes a protein.

[0201] 9. The method of 8, wherein the protein includes an
antigen, the plurality of first proteins include first antibodies,
and the plurality of second proteins include second antibod-
ies.

[0202] 10. A method comprising: generating, by a com-
puting system including one or more computing devices
having one or more processors and memory and using a
generative adversarial network, a plurality of first amino
acid sequences, individual first amino acid sequences of the
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plurality of first amino acid sequences corresponding to
antibody light chains; generating, by the computing system
and using the generative adversarial network, a plurality of
second amino acid sequences, individual second amino acid
sequences of the plurality of second amino acid sequences
corresponding to antibody heavy chains; combining, by the
computing system and using the generative adversarial
network, a first amino acid sequence of the plurality of first
amino acid sequences with a second amino acid sequence of
the plurality of second amino acid sequences to produce a
third amino acid sequence, the third amino acid sequence
corresponding to an antibody including a light chain corre-
sponding to the first amino acid sequence and a heavy chain
corresponding to the second amino acid sequence; and
analyzing, by the computing system and using the genera-
tive adversarial network, the third amino acid sequence with
respect to an additional plurality of amino acid sequences to
produce an output, the additional plurality of amino acid
sequences being included in training data for the generative
adversarial network and the output indicating a measure of
similarity between the third amino acid sequence and at least
a portion of the additional plurality of amino acid sequences.
[0203] 11. The method of 10, wherein combining the first
amino acid sequence with the second amino acid sequence
includes concatenating the second amino acid sequence to
the first amino acid sequence.

[0204] 12. The method of 10 or 11, wherein: the genera-
tive adversarial network includes a first generating compo-
nent that implements a first model to generate the plurality
of first amino acid sequences and a second generating
component that implements a second model to generate the
plurality of second amino acid sequences; the first model
includes a first function having one or more first variables
and one or more first weights; and the second model includes
a second function different from the first function, the
second function including one or more second variables and
one or more second weights.

[0205] 13. The method of 12, wherein the third amino acid
sequence is analyzed by a discriminator and the output is
provided to at least one of the first generating component or
the second generating component.

[0206] 14. The method of 13, wherein the first generating
component modifies the first model based on the output.
[0207] 15. The method of 13, wherein the second gener-
ating component modifies the second model based on the
output.

[0208] 16. The method of any one of 10-15. wherein the
first amino sequence includes at least a portion of a first
variable region of an antibody light chain and the second
amino acid sequence includes at least a portion of a first
variable region of an antibody heavy chain.

[0209] 17. The method of any one of 10-16, wherein the
first amino acid sequence includes at least a portion of a first
variable region and a first constant region of an antibody
light chain and the second amino acid sequence includes at
least a portion of a second variable region and a second
constant region of an antibody heavy chain.

[0210] 18. The method of any one of 10-17. comprising:
determining, by the computing system and based on the
output, that training of the first model is complete such that
the first model is a first trained model; determining, by the
computing system and based on the output, that training of
the second model is complete such that the second model is
a second trained model; generating, by the computing sys-
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tem and using the first trained model, a first additional amino
acid sequence of an additional light chain of an antibody;
generating, by the computing system and using the second
trained model, a second additional amino acid sequence of
an additional heavy chain of an antibody; and combining, by
the computing system. the first additional amino acid
sequence and the second additional amino acid sequence to
produce a third additional amino acid sequence, the third
additional amino acid sequence including a light chain and
a heavy chain of an additional antibody.

[0211] 19. The method of 18, comprising evaluating, by
the computing system, the third additional amino acid
sequence with respect to one or more metrics, the one or
more metrics including at least one of a number of hydro-
phobic amino acids included in the third additional amino
acid sequence, a number of positively charged amino acids
included in the third additional amino acid sequence, a
number of negatively charged amino acids included in the
third additional amino acid sequence, a number of
uncharged amino acids included in the third additional
amino acid sequence, a level of expression of the third
additional amino acid sequence, a melting temperature of
the third additional amino acid sequence, or a level of
self-aggregation of the third additional amino acid sequence.

[0212] 20. The method of 18, comprising analyzing, by the
computing system and using the generative adversarial
network, the third additional amino acid sequence with
respect to a further plurality of amino acid sequences to
produce an additional output, wherein: the further plurality
of amino acid sequences is included in additional training
data for the generative adversarial network; the additional
training data includes different amino acid sequences of
antibodies than the amino acid sequences included in the
training data; and the additional output indicates an addi-
tional measure of similarity between the third additional
amino acid sequence and at least a portion of the further
plurality of amino acid sequences.

[0213] 21. A system comprising: one or more hardware
processors; and one or more non-transitory computer read-
able media storing computer-executable instructions that,
when executed by the one or more hardware processors,
cause the one or more processor to perform operations
comprising: obtaining first data indicating a first amino acid
sequence of a first antigen; obtaining second data indicating
binding interactions between individual antibodies of a first
plurality of antibodies and one or more antigens: determin-
ing a second amino acid sequence of a second antigen of the
one or more antigens that has at least a threshold amount of
identity with respect to at least a portion of the first amino
acid sequence of the first antigen; determining, based on the
second data, a group of the first plurality of antibodies
included in the second data that have at least a first threshold
amount of binding interaction with the second antigen;
generating, using a generative adversarial network, a model
to produce additional amino acid sequences of additional
antibodies having at least a threshold probability of having
at least a second threshold amount of binding interaction
with the first antigen, wherein the model is generated based
on the first amino acid sequence of the first antigen and the
group of the first plurality of antibodies; and generating,
using the model, a second plurality of amino acid sequences
of antibodies that correspond to the first antigen.
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[0214] 22. The system of 21, wherein the binding inter-
actions include at least one of a binding affinity or a binding
avidity.

[0215] 23. The system of 21 or 22, wherein: the binding
interactions indicate an amino acid sequence of a binding
region of an antibody of the first plurality of antibodies and
an additional amino acid sequence of an epitope region of an
antigen of the one or more antigens, and the binding region
binds to the epitope region.

[0216] 24. The system of 23, wherein the binding inter-
actions indicate couplings between amino acids included in
the binding region and additional amino acids included in
the epitope region.

[0217] 25. The system of any one of 21-24, wherein the
binding interactions include equilibrium constants between
the individual antibodies of a first plurality of antibodies and
the one or more antigens.

[0218] 26. The system of any one of 21-25, wherein the
operations comprise evaluating, using a software tool, one or
more metrics with respect to the second plurality of amino
acid sequences of antibodies, the one or more metrics
including at least one of a number of hydrophobic amino
acids included in individual amino acid sequences of the
second plurality of amino acid sequences, a number of
positively charged amino acids included in individual amino
acid sequences of the second plurality of amino acid
sequences, a number of negatively charged amino acids
included in individual amino acid sequences of the second
plurality of amino acid sequences, a number of uncharged
amino acids included in individual amino acid sequences of
the second plurality of amino acid sequences, a level of
expression of individual antibodies, a melting temperature
of individual antibodies, or a level of self-aggregation of
individual antibodies.

[0219] 27. A system comprising: one or more hardware
processors; and one or more non-transitory computer read-
able media storing computer-executable instructions that,
when executed by the one or more hardware processors,
cause the one or more processor to perform operations
comprising: obtaining first data indicating a composition of
a target molecule; obtaining second data indicating binding
interactions between individual first proteins of a plurality of
first proteins and one or more additional molecules: deter-
mining a composition of an additional molecule of the one
or more additional molecules that has at least a threshold
amount of similarity with respect to at least a portion of the
composition of the target molecule; determining, based on
the second data, a group of the plurality of first proteins
included in the second data that have at least a first threshold
amount of binding interaction with the additional molecule;
generating, using a generative adversarial network, a model
to produce additional amino acid sequences of additional
proteins having at least a threshold probability of having at
least a second threshold amount of binding interaction with
the target molecule, wherein the model is generated based on
the composition of the target molecule and the group of the
plurality of first proteins; and generating, using the model, a
plurality of second amino acid sequences of second proteins
that correspond to the target molecule.

[0220] 28. The system of 27, wherein the target molecule
includes a protein.
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[0221] 29. The system of 28, wherein the protein includes
an antigen, the plurality of first proteins include first anti-
bodies, and the plurality of second proteins include second
antibodies.

[0222] 30. A system comprising: one or more hardware
processors; and one or more non-transitory computer read-
able media storing computer-executable instructions that,
when executed by the one or more hardware processors,
cause the one or more processor to perform operations
comprising: generating, using a generative adversarial net-
work, a plurality of first amino acid sequences, individual
first amino acid sequences of the plurality of first amino acid
sequences corresponding to antibody light chains; generat-
ing, using the generative adversarial network, a plurality of
second amino acid sequences, individual second amino acid
sequences of the plurality of second amino acid sequences
corresponding to antibody heavy chains; combining, using
the generative adversarial network, a first amino acid
sequence of the plurality of first amino acid sequences with
a second amino acid sequence of the plurality of second
amino acid sequences to produce a third amino acid
sequence, the third amino acid sequence corresponding to an
antibody including a light chain corresponding to the first
amino acid sequence and a heavy chain corresponding to the
second amino acid sequence; and analyzing, using the
generative adversarial network, the third amino acid
sequence with respect to an additional plurality of amino
acid sequences to produce an output, the additional plurality
of amino acid sequences being included in training data for
the generative adversarial network and the output indicating
a measure of similarity between the third amino acid
sequence and at least a portion of the additional plurality of
amino acid sequences.

[0223] 31. The system of 30, wherein combining the first
amino acid sequence with the second amino acid sequence
includes concatenating the second amino acid sequence to
the first amino acid sequence.

[0224] 32. The system of 30 or 31, wherein: the generative
adversarial network includes a first generating component
that implements a first model to generate the plurality of first
amino acid sequences and a second generating component
that implements a second model to generate the plurality of
second amino acid sequences; the first model includes a first
function having one or more first variables and one or more
first weights; and the second model includes a second
function different from the first function, the second function
including one or more second variables and one or more
second weights.

[0225] 33. The system of 32, wherein the third amino acid
sequence is analyzed by a discriminator and the output is
provided to at least one of the first generating component or
the second generating component.

[0226] 34. The system of 33, wherein the first generating
component modifies the first model based on the output.
[0227] 35. The system of 33, wherein the second gener-
ating component modifies the second model based on the
output.

[0228] 36. The system of any one of 30-35, wherein the
first amino sequence includes at least a portion of a first
variable region of an antibody light chain and the second
amino acid sequence includes at least a portion of a first
variable region of an antibody heavy chain.

[0229] 37. The system of any one of 30-36, wherein the
first amino acid sequence includes at least a portion of a first
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variable region and a first constant region of an antibody
light chain and the second amino acid sequence includes at
least a portion of a second variable region and a second
constant region of an antibody heavy chain.

[0230] 38. The system of any one of 30-37, wherein the
operations comprise: determining, based on the output, that
training of the first model is complete such that the first
model is a first trained model; determining, based on the
output, that training of the second model is complete such
that the second model is a second trained model; generating,
using the first trained model, a first additional amino acid
sequence of an additional light chain of an antibody; gen-
erating, using the second trained model, a second additional
amino acid sequence of an additional heavy chain of an
antibody; and combining the first additional amino acid
sequence and the second additional amino acid sequence to
produce a third additional amino acid sequence, the third
additional amino acid sequence including a light chain and
a heavy chain of an additional antibody.

[0231] 39. The system of 38, wherein the operations
comprise evaluating the third additional amino acid
sequence with respect to one or more metrics, the one or
more metrics including at least one of a number of hydro-
phobic amino acids included in the third additional amino
acid sequence, a number of positively charged amino acids
included in the third additional amino acid sequence, a
number of negatively charged amino acids included in the
third additional amino acid sequence, a number of
uncharged amino acids included in the third additional
amino acid sequence, a level of expression of the third
additional amino acid sequence, a melting temperature of
the third additional amino acid sequence, or a level of
self-aggregation of the third additional amino acid sequence.
[0232] 40. The system of 38, the operations comprising
analyzing, using the generative adversarial network, the
third additional amino acid sequence with respect to a
further plurality of amino acid sequences to produce an
additional output, wherein: the further plurality of amino
acid sequences is included in additional training data for the
generative adversarial network; the additional training data
includes different amino acid sequences of antibodies than
the amino acid sequences included in the training data; and
the additional output indicates an additional measure of
similarity between the third additional amino acid sequence
and at least a portion of the further plurality of amino acid
sequences.

[0233] 41. A method comprising: obtaining a training
dataset including amino acid sequences of proteins; gener-
ating structured amino acid sequences based on the training
dataset; generating a model to produce additional amino acid
sequences that correspond to the amino acid sequences
included in the training dataset using the structured amino
acid sequences and a generative adversarial network; gen-
erating the additional amino acid sequences using the model
and an input vector; and evaluating the additional amino
acid sequences according to one or more criteria to deter-
mine metrics for the additional amino acid sequences.
[0234] 42. The method of 41, further comprising deter-
mining a number of variations of an amino acid sequence
included in the additional amino acid sequences with respect
to a protein derived from a gene of a germline.

[0235] 43. The method of 41 or 42, wherein the generative
adversarial network includes a Wasserstein generative
adversarial network.
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[0236] 44. The method of any one of 41-43, wherein the
structured amino acid sequences are represented in a matrix
that includes a first number of rows and a second number of
columns, individual rows of the first number of rows cor-
responding to a position of a sequence, and individual
columns of the second number of columns corresponding to
individual amino acids.

[0237] 45. The method of any one of 41-44, wherein one
or more characteristics of proteins corresponding to the
additional amino acid sequences have at least a threshold
similarity to one or more characteristics of the proteins
included in the training dataset.

[0238] 46. The method of any one of 41-45, wherein the
one or more characteristics include at least one of structural
position features, tertiary structure features, or biophysical
properties.

[0239] 47. The method of any one of 41-46, wherein the
proteins include antibodies, affibodies, affilins, affimers,
affitins, alphabodies, anticalins, avimers, monobodies,
designed ankyrin repeat proteins (DARPins), nanoCLAMP
(clostridal antibody mimetic proteins), antibody fragments,
or combinations thereof.

[0240] 48. A method comprising: obtaining a training
dataset including amino acid sequences of antibodies; gen-
erating a model to produce additional amino acid sequences
of antibodies that have one or more characteristics that are
similar to characteristics of the antibodies of the training
dataset using a generative adversarial network; and gener-
ating the additional amino acid sequences using the model
and an input vector.

[0241] 49. The method of 48, further comprising applying
a classification system to the amino acid sequences of the
training dataset, the classification system indicating a first
number of positions to associate with heavy chain regions of
the antibodies and a second number of positions to associate
with light chain regions of the antibodies.

[0242] 50. The method of 48 or 49, further comprising:
using a first generative adversarial network and a first
training dataset to generate a first model to produce a
plurality of heavy chain regions of antibodies; using a
second generative adversarial network and a second training
dataset to generate a second model to produce a plurality of
light chain regions of antibodies; and generating antibody
sequences by combining at least portions of the plurality of
heavy chain regions and with at least portions of the light
chain regions.

[0243] 51. A method comprising: training a first model of
a first generating component of a generative adversarial
network using a first training dataset including a first number
of amino acid sequences of light chains of antibodies to
produce a first trained model; training a second model of a
second generating component of the generative adversarial
network using a second training dataset including a second
number of amino acid sequences of heavy chains of anti-
bodies to produce a second trained model, wherein training
the second generating component proceeds at a first rate that
is different from a second rate of training the first generating
component; generating, using the first generating compo-
nent, a first additional number of first additional amino acid
sequences corresponding to antibody light chains; generat-
ing, using the second generating component, a second
additional number of second additional acid sequences cor-
responding to antibody heavy chains; and combining, using
the generative adversarial network, a first amino acid
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sequence of the first additional number of first additional
amino acid sequences with a second amino acid sequence of
the second additional number of second additional amino
acid sequences to produce a third amino acid sequence, the
third amino acid sequence corresponding to an antibody
including a light chain corresponding to the first amino acid
sequence and a heavy chain corresponding to the second
amino acid sequence.

[0244] 52. The method of 51, wherein the second gener-
ating component is trained using a number of hobbled
weights to decrease a rate of training the second generating
component relative to an additional rate of training the
second generating component without the number of
hobbled weights.

[0245] 53. The method of 51 or 52, wherein the second
generating component is trained by slowing a gradient of the
second generating component.

[0246] 54. The method of any one of 51-53, comprising:
training the second generating component during a first
period of time; determining that a first plurality of amino
acid sequences produced during an end portion of the first
period of time have a first level of quality; training the first
generating component for a second period of time that
includes the first period of time and is longer than the first
period of time; determining that a second plurality of amino
acid sequences produced during an end portion of the second
period of time have the first level of quality; training the
second generating component during a third period of time
that is subsequent to the second period of time; determining
that a third plurality of amino acid sequences produced
during an end portion of the third period of time have a
second level of quality; training the first generating compo-
nent for a fourth period of time that includes the third period
of time and is longer than the third period of time; and
determining that a fourth plurality of amino acid sequences
produced during an end portion of the fourth period of time
has the second level of quality.

[0247] 55. The method of 54, wherein a total amount of
time elapsed to train the second generating component is
less than a total amount of time elapsed to train the first
generating component.

[0248] 56. A method comprising: obtaining a training
dataset including amino acid sequences of proteins; gener-
ating structured amino acid sequences based on the training
dataset; generating a model to produce additional amino acid
sequences that correspond to the amino acid sequences
included in the training dataset using the structured amino
acid sequences and a generative adversarial network; gen-
erating the additional amino acid sequences using the model
and an input vector; determining an amount of similarity
between individual additional amino acid sequences and an
amino acid sequence of an antibody produced in relation to
expression of a germline gene; determining a length of
respective complementarity-determining region (CDR) H3
regions of the individual amino acid sequences: and evalu-
ating the additional amino acid sequences based on the
respective amounts of similarity and the respective lengths
of the CDR H3 regions of the additional amino acid
sequences.

[0249] 57. The method of 56, comprising evaluating the
additional amino acid sequences based on a measure of
immunogenicity of the additional amino acid sequences.
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[0250] 58. The method of 57, wherein the measure of
immunogenicity corresponds to a measure of major histo-
compatibility complex (MHC) Class II binding.

[0251] 59. A system comprising: one or more hardware
processors; and one or more non-transitory computer read-
able media storing computer-executable instructions that,
when executed by the one or more hardware processors,
cause the one or more processor to perform operations
comprising: training a first model of a first generating
component of a generative adversarial network using a first
training dataset including a first number of amino acid
sequences of light chains of antibodies to produce a first
trained model; training a second model of a second gener-
ating component of the generative adversarial network using
a second training dataset including a second number of
amino acid sequences of heavy chains of antibodies to
produce a second trained model, wherein training the second
generating component proceeds at a first rate that is different
from a second rate of training the first generating compo-
nent; generating, using the first generating component, a first
additional number of first additional amino acid sequences
corresponding to antibody light chains; generating, using the
second generating component, a second additional number
of second additional acid sequences corresponding to anti-
body heavy chains; and combining, using the generative
adversarial network, a first amino acid sequence of the first
additional number of first additional amino acid sequences
with a second amino acid sequence of the second additional
number of second additional amino acid sequences to pro-
duce a third amino acid sequence, the third amino acid
sequence corresponding to an antibody including a light
chain corresponding to the first amino acid sequence and a
heavy chain corresponding to the second amino acid
sequence.

[0252] 60. The system of 59, wherein the second gener-
ating component is trained using a number of hobbled
weights to decrease a rate of training the second generating
component relative to an additional rate of training the
second generating component without the number of
hobbled weights.

[0253] 61. The system of 59 or 60, wherein the second
generating component is trained by slowing a gradient of the
second generating component.

[0254] 62. The system of any one of 59-61, wherein the
operations comprise: training the second generating com-
ponent during a first period of time; determining that a first
plurality of amino acid sequences produced during an end
portion of the first period of time have a first level of quality;
training the first generating component for a second period
of time that includes the first period of time and is longer
than the first period of time; determining that a second
plurality of amino acid sequences produced during an end
portion of the second period of time have the first level of
quality; training the second generating component during a
third period of time that is subsequent to the second period
of time; determining that a third plurality of amino acid
sequences produced during an end portion of the third period
of time have a second level of quality; training the first
generating component for a fourth period of time that
includes the third period of time and is longer than the third
period of time; and determining that a fourth plurality of
amino acid sequences produced during an end portion of the
fourth period of time has the second level of quality.
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[0255] 63. The system of 62, wherein a total amount of
time elapsed to train the second generating component is
less than a total amount of time elapsed to train the first
generating component.

[0256] 64. A system comprising: one or more hardware
processors; and one or more non-transitory computer read-
able media storing computer-executable instructions that,
when executed by the one or more hardware processors,
cause the one or more processor to perform operations
comprising: obtaining a training dataset including amino
acid sequences of proteins; generating encoded amino acid
sequences based on the training dataset; generating a model
to produce additional amino acid sequences that correspond
to the amino acid sequences included in the training dataset
using the encoded amino acid sequences and a generative
adversarial network; generating the additional amino acid
sequences using the model and an input vector; determining
an amount of similarity between individual additional amino
acid sequences and an amino acid sequence of an antibody
produced in relation to expression of a germline gene;
determining a length of respective complementarity-deter-
mining region (CDR) H3 regions of the individual amino
acid sequences; and evaluating the additional amino acid
sequences based on the respective amounts of similarity and
the respective lengths of the CDR H3 regions of the addi-
tional amino acid sequences.

[0257] 65. The system of 64. wherein the operations
comprise evaluating the additional amino acid sequences
based on a measure of immunogenicity of the additional
amino acid sequences.

[0258] 66. The system of 65, wherein the measure of
immunogenicity corresponds to a measure of major histo-
compatibility complex (MHC) Class II binding.

EXAMPLES

[0259] We demonstrate the use of a Generative Adver-
sarial Network (GAN), trained from a set of over 400,000
light and heavy chain human antibody sequences, to learn
the rules of human antibody formation. The resulting model
surpasses common in silico techniques by capturing residue
diversity throughout the variable region, and is capable of
generating extremely large, diverse libraries of novel anti-
bodies that mimic somatically hypermutated human reper-
toire response. This method permits us to rationally design
de novo humanoid antibody libraries with explicit control
over various properties of our discovery library. Through
transfer learning, we are able to bias the GAN to generate
molecules with key properties of interest such as improved
stability and developability, lower predicted MHC Class 11
binding, and specific complementarity-determining region
(CDR) characteristics. These approaches also provide a
mechanism to better study the complex relationships
between antibody sequence and molecular behavior, both in
vitro and in vivo. We validate our method by successfully
expressing a proof-of-concept library of nearly 100,000
GAN-generated antibodies via phage display. We present the
sequences and homology-model structures of example gen-
erated antibodies expressed in stable CHO pools and evalu-
ated across multiple biophysical properties. The creation of
discovery libraries using our in silico approach allows for
the control of pharmaceutical properties such that these
therapeutic antibodies can provide a more rapid and cost-
effective response to biological threats.
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[0260] Antibodies are an important class of biologics-
based therapeutics with clear advantages of specificity and
efficacy. The high cost and long development times, how-
ever, present key challenges in the accessibility of mono-
clonal antibody therapeutics. To quickly respond to known
and new pathogens and disease, and to provide affordable,
high quality treatment to patients around the globe, a mol-
ecule must be designed for activity; but it must also be made
developable and safe for patients. Adding to their overall
cost and process time, many antibodies suffer from poor
yields or require individually customized processing proto-
cols or formulations because their biophysical properties
cause them to aggregate, unfold, precipitate, or undergo
other physical modification during processing into a drug
product. Even with the significant amounts of research being
put into discovering pharmacologically-active antibodies
and understanding their physical and biological behavior,
they remain challenging to identify for given diseases or
pathogens and to optimize for developability.

[0261] Discovery of therapeutic antibodies frequently
involves either display methodologies or B-cells isolated
from humans or animals that have been exposed to an
antigen or a disease target of interest. Although B-cell
isolation and deep sequencing workflows have improved
over the years in regards to cost, labor, and speed, there are
still inherent limitations when considering the process as an
antibody discovery platform. A sufficient immunological
response is required from the specific subjects being used,
and due to the low number and diversity of the subjects
being used, there can be insufficient antibody sequence
diversity that is expressed. There is also the challenge of
overcoming B-cell-driven survival against specific epitopes
in which therapeutically viable epitopes are not utilized by
an immune response when they are out-competed by a
dominant binding epitope, leading to an antibody panel
focused on a limited epitope. The library approach can
provide a search across a wider range of sequence space, but
most examples of synthetic libraries result in a sequence
profile which is quite different from those expressed by the
human immune system. In both cases, there is little to no
ability to control the chemical, biophysical, or biological
characteristics of the identified candidates. As a result,
discovered antibodies frequently have the aforementioned
features seriously complicating their developability and sta-
bility.

[0262] A recent synthetic library approach implements
random mutagenesis in which specific residues are allowed
to vary in type following statistical rules for frequency of
appearance by location in the antibody (commonly known as
positional frequency analysis, PFA). PFA and other related
methods do not take into account any interactions between
residues except to the extent that such interactions limit the
expressibility of the protein. While this widely explores the
sequence space, it ignores how residue types interact to form
stabilizing features such as hydrogen or ionic bonds. Ran-
dom assignment is also done without consideration of the
characteristics of the final antibody entity, leading to some
that have unusual and potentially problematic protein sur-
face features.

[0263] Another drawback to most synthetic library
approaches is that they focus solely on the complementary-
determining regions (CDRs) of the antibodies. While the
CDRs are the most critical portion of the antibody variable
region in determining binding interactions, many Kabat-
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defined CDR positions are part of the core immunoglobulin
(Ig) fold, and many of the framework residues can also play
an important role in direct antigen binding, stability of the
molecule, and CDR orientation.’ By limiting mutations to
the CDRs, existing libraries neglect the possibility of
improved bioactivity and developability afforded by some
framework mutations.

[0264] Even with an identified therapeutic antibody,
improving that antibody’s production and purification
behavior through sequence modification can be challenging.
While many papers have been published trying to develop a
predictable connection between an antibody’s sequence and/
or computed molecular structure and the molecule’s various
physical characteristics, the connection is elusive as it
involves complex nonlinear interactions between the con-
stituent amino acid residues. Frequently, such work involves
an exceptionally small number of molecules, frequently
under 200 and often under 50, from a non-diverse set of
sequences—a small number of parental sequences, several
parents with a small number of highly-related sequence
variants, or a single antibody with mutational scanning.
Such approaches give information on an individual antibody
or small group, but are highly unlikely to generalize the
complexity of residue interactions to other antibodies. Such
understanding requires exploration of the wider hyperdi-
mensional space of antibody sequences. Computational
approaches used to optimize molecular behavior also fre-
quently ignore whether the revised molecule remains similar
to human antibodies. That assessment is left to expensive in
vitro studies.

[0265] Deep learning offers one route to better capture the
complex relationships between sequence and protein behav-
ior and has been the focus of many recent publications.
Within the context of discovery and libraries, the generative
models such as Generative Adversarial Networks (GANs)
and autoencoder networks (AEs) are of particular interest as
they have been shown to be viable for generating unique
sequences of proteins and nanobodies and antibody CDRs.
But these efforts focus on short sequences of proteins or
portions of antibodies. Use of these approaches in the full
antibody sequence space entails a unique set of challenges
for machine learning models.

[0266] Antibodies derive from different germline back-
grounds, are much larger in size, and are composed of
multiple chains, leading to a more complex sequence and
structural space. More complexity in a machine learning
setting generally requires more data to resolve. However,
sequence data, with associated experimental data, is more
limited for antibodies and is far more costly to come by than
small molecules.

[0267] Here, we present the Antibody-GAN, a new syn-
thetic approach to designing a novel class of antibody
therapeutics which we term “humanoid” antibodies. The
Antibody-GAN uses modified Wasserstein-GANs for both
single-chain (light or heavy chain) and paired-chain (light
and heavy chain) antibody sequence generation. These
GANSs allow us to encode key properties of interest into our
libraries for a feature-biased discovery platform. Our Anti-
body-GAN architecture (1) captures the complexity of the
variable region of the standard human antibody sequence
space, (2) provides a basis for generating novel antibodies
that span a larger sequence diversity than is explored by
standard in silico generative approaches, and (3) provides,
through transfer learning (continued training of a model with
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a subset of data with specific desirable characteristics), an
inherent method to bias the physical properties of the
generated antibodies toward improved developability and
chemical and biophysical properties.

[0268] We demonstrate the GAN library biasing on such
properties as a reduction of negative surface area patches,
identified as a potential source of aggregation, thermal
instability, and possible half-life reductions, and away from
MHC class II binding, which may reduce the immunoge-
nicity of the generated antibodies. We show, additionally,
library biasing to a higher isoelectric point (pl) to reduce
aggregation and prevent precipitation in therapeutic formu-
lations, and towards longer CDR3 lengths which can
increase diversity and has been known to create more
effective therapeutics for a class of targets.

[0269] To demonstrate the viability of the Antibody-GAN
to generate humanoid antibody sequences, the GAN was
used to generate a proof-of-concept validation library of
100k sequences from 4 germline subgroups. These
sequences were generated using two single-chain GANs
(each trained on a set of 400,000 heavy or light chain
sequences from human-repertoire antibodies). The GAN
sequences were expressed as antibody antigen binding frag-
ments (Fabs) in phage. Two of the less-represented germline
subgroups were optimized for germline agreement using
transfer learning. From this initial library, we present the
sequences, structure, and biophysical properties of two
antibodies with divergent surface patch features which were
expressed in stable Chinese hamster ovary (CHO) cells.

[0270] Generative Adversarial Networks for Antibody
Design
[0271] The general Antibody-GAN architecture in which a

set of real training variable-region (Fv) antibody sequences
are fed to a discriminator of the GAN along with the output
of the generator. The generator takes a vector of random
seeds as input, and outputs a random synthetic antibody
sequence. During training, the discriminator is progressively
trained to attempt to accurately distinguish between the real
and the synthetic sequences and the generator is progres-
sively trained to produce synthetic sequences that cannot be
distinguished from the real human repertoire sequences in
the training set. After initial training of the Antibody-GAN
from the entire training set, transfer learning can be used to
bias the GAN towards generating molecules with desired
properties.

[0272] As a demonstration of the general architecture and
training approach, an Antibody-GAN was trained using a set
of 400,000 human-repertoire sequences, per chain, ran-
domly selected from the Observed Antibody Space project
(OAS). Prior to training, the sequences were all structurally
aligned using the AHo numbering system which enables
direct comparison of residues at the same structural position
across the dataset. This greatly simplifies the relationships
that the GAN must capture both for generation and discrimi-
nation. Additional training details are provided in the meth-
ods section.

[0273] Sequences from the Antibody-GAN (GAN), the
OAS training set, and a set of sequences with 100% germ-
line framework and PFA-generated CDRs (PFA) were com-
pared by selecting a random set of 10,000 sequences, all
classified as germline HV3-30, from the training set and all
three synthetic sets. These were evaluated on the distribution
of percent germline agreement of the framework residues.
Within the human repertoire, deviations from framework
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germline agreement arise from the sequences having under-
gone somatic hypermutation during B-cell maturation. Mol-
ecules from the Antibody-GAN model (GAN) deviate from
germline much like the OAS. Note that the PFA set uses an
exact germline framework; as such, the germline agreement
is always 100%.

[0274] The diversity of the heavy variable (HV) CDR3
was used as an indicator of the diversity of binding paratopes
within a given set and was assessed using (1) pairwise
Levenshtein distances calculated from only the HV CDR3
residues in all three sets, and (2) the scores from the first two
components of a principal component analysis (PCA) model
on the aligned HV CDR3 sequences from the OAS, GAN,
and PFA data. The OAS set in general shows the greatest
diversity in HV, however, the GAN and PFA sets have
similar diversity to the main peak in OAS, with the GAN
exhibiting slightly larger diversity than PFA.

[0275] The distribution of sequence variability in the OAS
human repertoire set is more similar to those seen in the
GAN set, than the distribution in the PFA set, which diverges
significantly from the other two sets, particularly in the
high-density regions of the plots. The explained variance of
PCA components 1 and 2 are 10% and 4%, respectively.
While these are only small portions of the overall variance
in the HV CDR3, they do represent the largest covarying
relationships between the HV CDR3 residues and indicate
that the Antibody-GAN approach captures significant rela-
tionships in human repertoire HV CDR3 that the PFA
approach does not. The KL-divergence is a measure of how
different two distributions are from each other, with a value
of 0 indicating identical distributions and values tending
away from O indicating more divergent distributions. The
KL-divergence of the distribution over PC1, the component
that captures most of the variance in CDR3, for the OAS and
GAN sets is 0.57. The KL-divergence of PC1 for the OAS
and PFA sets is 1.45. These distributions for PC1 and PC2
for both the GAN and the PFA sets, relative to OAS can be
determined. The PFA set shows notably more divergence
from the OAS and GAN sets and raises the question of how
well the PFA approach reproduces human paratopes, as well
as the diversity of these paratopes.

[0276] Bias and Control of Antibody Discovery Libraries
[0277] Our generative, deep-learning approach to human-
oid antibody library generation not only results in antibody
libraries that are more human-like than existing synthetic
library approaches, but it also allows us to control the
features of our libraries. A subset of these libraries were
generated using a deep-learning technique known as transfer
learning, which biases networks from the general Antibody-
GAN-learned properties towards specific features of inter-
est. The corresponding heatmap shows the difference, in
percent of sequences in a given bin, between each library
and OAS.

[0278] Biasing on the length of the primary binding
paratope, CDR H3, of an antibody sequence can be deter-
mined. We compare 4 libraries to OAS: the baseline Anti-
body-GAN (GAN) from above, Antibody-GANs transfer
learned to small (GAN -C) and to large (GAN +C) CDR H3
lengths, and the PFA-generated library (PFA) from above.
The baseline Antibody-GAN library shows a total 27%
difference from OAS in its CDR H3 distribution. Though
still significantly different, it more closely reproduces the
OAS distribution over CDR H3 than PFA (38% difference)
or the other two intentionally biased libraries. The GAN -C
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library was generated by a model transfer-learned on a small
subset of about 1,000 sequences from the GAN library
which had CDR H3 lengths of less than 12 and resulted in
a library with 68% shift to shorter CDR H3 sequences. The
GAN +C was similarly transfer-learned on approximately
1,000 sequences from the GAN library which had CDR H3
lengths of >22, creating a very significant 89% bias towards
longer CDR H3 sequences. By creating antibodies with
longer CDRs, and therefore more residues to vary, the GAN
+C library also inherently biases towards diversity. Antibod-
ies with long CDR H3s have also been shown to have better
success as therapeutics for diseases such as human immu-
nodeficiency virus (HIV),>” and may be useful as a discov-
ery sub-library for targets that may require such long,
exposed paratopes.

[0279] Biasing on immunogenicity of the heavy chain (see
FIG. 23A for light chain biasing) using a major histocom-
patibility class H (MHCII) binding score derived from in
silico peptide fragment-MHCII binding affinity predictions
can be determined. We use an in-house machine learning
predictor for peptide-MHCII binding similar in effect to the
binding prediction tools provided by the Immune Epitope
DataBase (IEDB). Peptide-MHCII binding is the first step in
the T-cell-mediated immune response and the clearest
handle available for practically mitigating immunogenicity
risk. The GAN library, with only a 2% difference from OAS
in predicted immunogenicity, is statistically indistinguish-
able (at p<0.0001) from the human repertoire training set,
whereas PFA shows a statistically significant 11% shift
towards higher immunogenicity. The GAN -I library, using
a similar transfer learning approach to the one described
above, shows a total 76% shift to lower predicted MHCII
binding than human repertoire. Reduced MHCII binding is
presumed to reduce the likelihood of immunogenic response
as the binding is a necessary first step in that response. The
resulting biased GAN -I should generate molecules with
lower chance of immunogenic response. This large bias to
sequences of lower immunogenicity is a significant bias
towards higher quality antibody therapeutics, and could
result in a library of safer treatments for patients.

[0280] The extent to which this biasing corresponds to
lower immunogenicity will largely depend on the quality of
the model used to choose the transfer samples. As a control
condition, the GAN +1 library shows 49% bias towards
increased MHCII binding. While such a higher-immunoge-
nicity biased model would not usually be of interest in
developing a library, it could provide a means to generate
molecules to help validate the underlying MHCII binding
model, yet again highlighting the utility of a GAN method
as a tool to explore molecular and therapeutic space.

[0281] For antibody therapeutics, the isoelectric point (pl,
the pH at which the molecule is neutral) is a key measure of
developability since a pl near the formulation pH may lead
to high viscosity and aggregation or precipitation. A slightly
acidic pH generally results in a higher overall charge leading
to more recent formulations centered around pH 5.5. To
remain stable in solution, therapeutic antibodies would
ideally need to have a pl of greater than 8.5 for the overall
molecule. The GAN library provides a distribution of pl for
the Fv portion of the antibody that is statistically indistin-
guishable from OAS, and the PFA library creates a small
11% bias towards higher Fv pl. We show, with the GAN -P
library, that we can bias the library with a 79% shift to lower
Fv pl via transfer learning. The GAN +P library, however,
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shows a 43% increase in sequences with a calculated Fv pl
greater than 9, resulting in likely a significant bias towards
developability.

[0282] Large surface patches in antibody therapeutics
have been linked to developability issues such as aggrega-
tion. thermal instability, elevated viscosity, and increased
clearance rate, but also to improvement of specificity, par-
ticularly when the patches are related to charge. As such,
biasing a library towards larger or smaller patches might
have beneficial effects. They also serve as an example of
generic biasing models towards desired structural properties.
Biasing on the maximum negative surface patch area of a
molecule, calculated using structure-based homology mod-
eling can be determined. Large negative patches have been
shown to increase antibody viscosity at high therapeutic
concentrations. Once again, the GAN library is statistically
equivalent to OAS in maximum negative patch size with
only a 3% difference, demonstrating the model’s ability to
capture human repertoire. The PFA library maintains a small
but significant 7% shift to lower negative surface patch area.
The GAN -N library shows that we can intentionally shift
our library towards smaller negative surface patches and
away from known developability issues with a 31% bias, as
shown in GAN -N. The GAN +N library shows that we can
also shift in the other direction with a 36% bias towards
larger negative patches. Structure-based properties like sur-
face patch can be more difficult to bias than sequence-based
ones due to (1) the non-Gaussian distribution of the property
and (2) the added layer of abstraction and complexity away
from sequence. These issues can likely be resolved by
increasing the number of sequences in the transfer learning
training set by, for example, iteratively training and sam-
pling. For more complex properties, layers can be added to
the model itself during transfer-learning.

[0283] Combinatorial Library Design and Expression of
Diverse Germlines

[0284] The synthesis of a diverse, de novo antibody dis-
covery library comprising specific sequences can be costly.
Such specific sequence targeting cannot be done with stan-
dard codon degeneracy approaches. To greatly reduce this
cost, we used a chain-oriented approach to our library
design. combinatorially combining heavy and light chains
that are created with specific amino-acid sequences designed
by the Antibody-GAN rather than designing each Fv indi-
vidually. The Antibody-GAN architecture (FIG. 21) is
designed to be modular. After training with paired-chain Fv
sequences, the heavy chain generator and light chain gen-
erator can be separately used to generate single-chain
sequences, such that any independently generated heavy
chain should pair with any independently generated light
chain to create a full Fv which maintains the library’s
intended features. All Antibody-GAN and transfer-learned
Antibody-GAN libraries were generated from models
trained in this manner.

[0285] It is also possible to split apart the Antibody-GAN
model, initially, into single chain models. These must be
trained on single chain sequences and may be useful when
creating diverse libraries of varying germlines, when there is
no property of interest associated with the full Fv for which
we want to bias. Because there are few public data sets
providing developability, expression, stability, and other
properties on paired-chain sequences, we choose to synthe-
siZze a naive, unbiased initial discovery library to express in
phage. Our goal for this first library is to reproduce human
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repertoire. In doing this, we will also create a data set which
can greatly inform biasing of future libraries. As such, the
subsequent GAN libraries and molecules were generated
using the single chain version of the Antibody-GAN.
[0286] For our initial library, we selected heavy chain
germlines IGHV3-30 and IGHV1-2 to pair combinatorially
with light chain germlines IGKV3-20 and IGKV1-39. The
number of training set examples for IGHV1-2 and IGKV1-
39 is lower than for the other two germlines, such that there
are not enough examples to train a model of sufficient
quality. The problem is compounded for other germlines
with even fewer training examples. This can be remedied
again by using transfer learning.

[0287] Because the HV3-30 and KV3-20 germlines are
well-represented in the OAS training set, the models gen-
erate sequences of sufficient framework quality. More diver-
gence from OAS in framework quality for the less-repre-
sented HV1-2 and KV1-39 germlines, respectively, was
determined when generated by a base model without transfer
learning. Only when the model is transfer-learned, allowed
to continue training on only the germline subgroup of
interest, is it then able to generate sequences with framework
quality more closely matching OAS for HV1-2 and KV1-39.
[0288] While a full-scale production library might contain
10,000 or more individual single-chain sequences from each
germline combined combinatorially to form billions of mol-
ecules, a proof-of-concept miniature library was created by
selecting 158 sequences from each of these four germlines
and combining them combinatorially to assemble a library
of around 100,000 total sequences.

[0289] Fab fragment display levels for our 4 germline-
paired sub-libraries were determined, each containing ~25,
000 GAN-generated sequences. Display levels were esti-
mated by capturing serial dilutions of purified phage on
ELISA plates coated with anti-human Fab and detecting
with anti-M13 antibodies conjugated to HRP. Average dis-
play levels, normalized for total phage concentration, of IgG
Fab from each of the sub-libraries in polyclonal phage were
determined. A slight bias for higher expression can be seen
at higher concentrations for those germline sub-libraries
which contain the KV1-39 sub-library. Whether or not this
difference is actually significant and related to higher toler-
ability of KV1-39 sequences, or represents differential bind-
ing of the anti-human Fab capture antibody used in the
ELISA, is an area of future studies.

[0290] To confirm the expressed Fab are indeed the
designed, de novo sequences, we selected and sequenced
~30 colonies expressed in monoclonal phage from each of
the 4 sub-libraries. Variable-region cladding of the selected
sequences from the two sub-libraries expressing KV3-20
light chain to the 158 GAN-designed KV3-20 sequences
shows primarily 1) our selection of colonies was random and
provides good coverage of the space of designed sequences
and 2) only a small fraction of the expressed sequences
contained any amino acid mutations relative to the GAN-
designed sequences; most matched our synthetic designs
exactly.

[0291] Similar cladding of the selected sequences from the
two sub-libraries expressing HV3-30 heavy chain was deter-
mined. The same observations can be made with this set.
The selected sequences span the design space well, and
show even fewer amino acid mutations and more exact
matches to the de novo GAN-designed sequences than the
KV3-20 set. Again, expression is shown for the sampled
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colonies and it is noted whether those sequences were paired
with the KV3-20 light chain. Phage library sequences that
are not marked as being paired with a light chain from the
KV3-20 library were paired with a light chain sequence
from the KV1-39 library.

[0292] A further subset of antibodies were selected from
the HV3-30/KV3-20 sub-library to be expressed in stable
CHO pools for biophysical analysis. FIG. 18D presents the
3D structure of two such GAN antibodies selected, in
particular, for their interesting patch properties. The mol-
ecule mAb GAN-1285 was selected for its very large
negative surface patch of ~600 A2, shown in red. Molecules
with such a large maximum negative patch are relatively
uncommon in the base Antibody-GAN distribution, but are
interesting to investigate for developability purposes. The
molecule mAb GAN-1528, by contrast, has a maximum
negative surface patch of ~140 A2,

[0293] Biophysical Validation of CHO-Expressed GAN
Antibodies
[0294] For the purpose of validation of our GAN approach

and to interrogate the interesting property of maximum
negative surface patch, we present the biophysical data of
mAb GAN-1285 and mAb GAN-1528 (FIGS. 18D, 19) after
stable CHO expression and purification. FIG. 20 shows the
behavior of these two antibodies across four key assays in
our platform: differential scanning fluorimetry (DSF), self-
interaction nanoparticle spectroscopy (SINS), polyethylene
glycol (PEG) solubility, and size-exclusion chromatography
(SEC). These assays are commonly used to assess the
stability and developability of therapeutic antibodies
[0295] DSF results for mAb GAN-1285 and mAb GAN-
1528, as well as a platform control antibody, MS-43 were
determined. DSF assesses the temperature at which certain
regions of the antibody begin to unfold. More stable, and
thus more developable antibodies tend to have one or more
regions unfold at higher temperatures and have a higher
first-unfolding transition temperature. The identical constant
regions of these three molecules all show an unfolding event
at around 72° C., presumed to be the IgG CH2 region. The
molecule with a very large negative surface patch, mAb
GAN-1285, shows much lower thermal stability, with an
initial unfolding event near 60° C. This is consistent with the
notion that negative surface patches are known to be related
to thermal instability.

[0296] The SINS assay is commonly used to interrogate
whether a molecule will self interact, leading to issues in the
manufacturing process as well as possible viscosity and
filterability issues. Interestingly, the two GAN molecules
exhibited the same SINS profile as the PBS negative control,
indicating a low propensity to self interact, particularly
compared to the positive control molecule, MS-63, known to
have high self-interaction behavior.

[0297] The remaining assays, PEG solubility and SEC,
show that both antibodies are reasonably soluble, and dis-
play relatively low amounts of high molecular weight
(HMW) formation, although there are potentially significant
differences between the two antibodies in both assays.

DISCUSSION

[0298] We describe here a new class of de novo human
antibodies derived in silico, which we refer to as “human-
0id”, owing to their explicit requirement that generated
sequences must mimic human antibody sequence patterns.
While antibodies have excellent antigen specificity and have
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often been adapted as scaffolds for therapeutic applications,
B-cells do not undergo selective pressure in vivo to produce
antibodies which have ideal biotherapeutic characteristics.
To reduce the cost of development and greatly increase the
time-to-response for known or new diseases and pathogens,
a discovery library must contain therapeutic antibodies with
desirable features such as: expressibility in a host system,
suitability for common protein manufacturing processes
while achieving high product purity and yield, and exhibit-
ing high stability during long-term storage conditions. In
addition, these therapeutic libraries must also contain anti-
bodies exhibiting in-use characteristics such as low viscosity
for injectability at high concentration, long elimination
half-lives to reduce dosing frequency, and high bioavailabil-
ity for conservation of the injected dose. Here, we have
described an Antibody-GAN approach to the in silico design
of monoclonal antibodies which retain typical human rep-
ertoire characteristics such as diversity and immunogenicity,
while raising the possibility of biasing the libraries in silico
to achieve other desirable biotherapeutic features.

[0299] We experimentally validate our in silico approach
via phage Fab-display of an initial library of ~100,000 GAN
sequences and present the biophysical properties of two
example GAN antibodies expressed in CHO. While the
biophysical data of the CHO-expressed molecules are not
sufficient to indicate any causal effect of the structural
differences on the biophysical properties, they show that the
molecules are folding appropriately and that they exhibit
expected biophysical properties. These results show that the
Antibody-GAN is capable of enabling study of large, truly
diverse sets of thousands of full-length secreted antibodies,
and hundreds of millions of antibody Fabs on phage for
biophysical properties. These will provide a real basis to
identify causal effect, or lack thereof, of structural properties
and sequence on biophysical properties—and that data has
the potential to feed in silico predictive models that are truly
generalized across antibodies.

[0300] Ongoing research will be needed to determine
precisely which antibody sequence, structure, or biophysical
features will bias antibody libraries for developability, qual-
ity, and efficacy, as there are many nonlinear pathways for
antibody optimization. Existing data sets which interrogate
antibody therapeutic developability consist of, in a few
cases, hundreds of molecules, but more commonly on the
order of tens of antibodies. Deriving from sequence, or even
structure, such complex properties as the viscosity or the
chemical or thermal stability of an antibody will require far
more than hundreds of example molecules. Until now,
protein scientists have had to rely on previously-discovered
antibodies and their nearby variants, which provide a very
small random sampling of the true antibody space. The
Antibody-GAN allows us to explore the human antibody
space in a rational way. Using transfer learning to bias
GANSs for given properties, either those calculated on struc-
tures from homology modeling, or measured on physically
expressed antibodies, we can now begin to understand such
questions as how engineering for developability affects key
properties like affinity and bio-availability. This provides a
mechanism for in silico and in vitro generation of a much
wider range of sequences with intentional biases forming
deep, rich training sets for human antibody research.

[0301] Recent advances in the protein assay space now
provide ultra high-throughput methods in phage or yeast to
express and interrogate, for example, the stability of mol-
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ecules,®® and many more will come. We can now rationally
design and create vast experimental antibody data sets for
those and future methods, and begin to understand the
properties of a developable and effective therapeutic drug.
[0302] Our Antibody-GAN approach, as a training-set
generation tool, will greatly expand our knowledge of anti-
body design and behavior. It will also change the way we
create therapeutics, by better reproducing properties of in
vivo-derived antibodies with characteristics that can be
tuned to make them better suited as biologics, for production
and treatment. Humanoid discovery libraries generated in
this way, will provide higher quality treatment and a more
rapid and cost-effective response to biological threats and
disease targets.

[0303] Methods
[0304] Training Set Data Sources
[0305] Data for the training sets was derived from the

Observed Antibody Space (OAS) repository. Raw nucleo-
tide sequences were automatically translated, classified, and
structurally aligned using in-house software (Abacus™).
The AHo structure numbering system was used for structural
alignments of the variable regions.

[0306] To create the training sets, variable regions were
first filtered to remove any sequences which were not
classified as human variable regions, by our in-house soft-
ware Abacus™, and then further cleaned to remove those
sequences which contained stop codons, truncations, or
insertions. Any sequence which had less than 85% agree-
ment to its closest germline was also removed.

[0307] For any paired-chain model, the distinct sequences
whose closest germline belonged to the heavy and light
germline frameworks of interest were then extracted. These
two subsets were randomly sampled and combined during
training to create paired sequences.

[0308] For any single-chain model, the initial training set
contained all represented germlines. If transfer learning was
necessary, it was done on an extracted set of sequences
whose closest germline belonged to the specific germline of
interest.

[0309] Antibody-GAN Development and Training

[0310] The Antibody-GAN code was developed in
Python. The Keras and Tensorflow deep-learning libraries
were primarily used to build and train the Antibody-GAN.
The Pandas and Numpy libraries were used to handle any
data and training set construction. Other public libraries that
were used in the development and analysis of the Antibody-
GAN include: Sklearn, Scipy, and Seaborn.

[0311] The architecture of the Antibody-GAN is based on
the Wasserstein-GAN (WGAN) (with gradient penalty)
architecture, and therefore consists of a generator and a
discriminator, which in the WGAN architecture is com-
monly referred to as a critic. The single-chain network
generator takes as input a noise vector of size 296. This
vector is fed into a dense layer, followed by 3 up-sampling
and 2D convolutional transpose layers, and a final SoftMax
layer to produce a 2D array of size 148x22. This 2D array
corresponds to a one-hot-encoded representation of 148
residues and 22 possible amino acids (including deletions
and Xs) of a light or heavy chain in an antibody sequence.
Antibody sequences aligned by AHo numbering have 149
residues in either chain; to make the network structure
simpler, we chose to remove one residue, which appears
relatively constant in human repertoire, from each chain
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during encoding. When decoding, we add this constant
residue back in. The discriminator, or critic,

[0312] takes as input the same 148x22 encoding of an
antibody chain and passes it through two 2D convolutional
layers, followed by a flattening, dense layer and a single-
node linear output.

[0313] The paired Antibody-GAN architecture is similar
to the single-chain version, except that there are two gen-
erators with the same architecture (one per chain). The
outputs of each independent-chain generator are concat-
enated into a 296x22 one-hot-encoded representation of an
antibody sequence with both heavy and light chains. It is
possible to extend the architecture when training or transfer
learning to complex properties that require nonlinear inter-
action between the two chains. The paired-GAN critic takes
as input a 296x22 one-hot-encoded representation of a
paired-chain antibody sequence and maintains a similar
architecture to the one described above.

[0314] The loss of the generator as well as the discrimi-
nator (critic) on fake (generated) and real (training set
examples) were determined, during training of the single-
chain HV3-30 GAN (using a batch size of 128). Quality was
assessed by germline framework agreement over training
epochs for this model. Training ends when the generated
sequences begin showing sufficient quality.

[0315] Human monoclonal antibodies have been shown to
have higher variability in the heavy chain than the light
chain. This may lead to asynchronous optimization of the
light chain generator and the heavy chain generator during
training in the paired

[0316] Antibody-GAN, leading to generated heavy chains
of higher quality than the light chain. This can be resolved
by freezing the layers of the heavy chain generator, once it
has reached a state of creating sequences of sufficient
quality, and continuing training on the network until the light
chain generator has reached a desired quality.

[0317] PFA Set Creation and OAS Set Selection

[0318] The IGHV3-30/IGKV3-20 PFA-based sets used
above were created using the IGHV3-30 and IGKV3-20
training sets extracted from the OAS, which consisted of
~250,000 and ~150,000 sequences respectively. The 100%
germline framework for IGHV3-30 was used as a constant
framework for all heavy chain PFA sequences, and the 100%
IGKV3-20 germline framework was used for all light
chains. Each residue in the CDRs (CDR1, CDR2, and
CDR3) were then generated using positional frequency
analysis; sampling randomly from a distribution represent-
ing the frequency of amino acids in the training set, for any
given position. 10,000 heavy-chain sequences and 10,000
light chain sequences were created in this manner and then
randomly paired together to create a set of 10,000 sequences
with full variable regions.

[0319] The OAS sets from above were created by ran-
domly downsampling 10,000 sequences from each of the
IGHV3-30 and IGKV3-30 training sets and then pairing
together to create a set of 10,000 sequences with full
variable regions.

[0320] DR3 PCA

[0321] To perform the PCA analysis, the aligned CDR3 of
a given antibody was one-hot encoded into a vector repre-
sentation. A 2-component PCA model was built, using the
sklearn library, on those one-hot encoded vectors from all
sequences of the OAS set, the PFA set, and the base GAN
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set (totaling 30,000 samples). Heavy chain and light chain
models were built and trained separately.

[0322] Antibody-GAN Biasing Sources
[0323] CDR H3
[0324] Our in-house software, Abacus™, was used to

assess the length of the CDR H3 from any training set,
GAN-generated set, or PFA-generated set.

[0325]

[0326] MHCII is a polymorphic transmembrane protein
that binds and presents fragments of foreign, extracellular
proteins to T-cell receptors (TCRs) to initiate an adaptive
immune response. The MHCII binding score is a composite
metric intended to quantify the immunogenicity risk in a
sequence based on whether its constituent peptides are
predicted to bind strongly and promiscuously to MHCII
proteins. The quality of this metric depends on the selection
of an accurate peptide-MHCII binding predictor and a
reasonable method for aggregating predictions across the
peptide fragments in a sequence and across allelic variants
of MHCII.

[0327] We developed a machine learning algorithm for
peptide-MHCII binding affinity prediction, trained on the
peptide-MHCII binding affinity data set used to train
NetMHClIIpan-3.2 and reported by Jensen et al. Several
machine learning algorithms have been developed that out-
perform traditional matrix-based approaches to peptide-
MHCII binding affinity prediction, including NetMHCII-
pan and, more recently, MARIA *°>* We use our in-house
MHCII binding predictor for ease of integration with our
other sequence analysis tools and based on favorable accu-
racy comparisons with published benchmarks (not shown in
the present report). Predictions from our models are gener-
ally correlated with the “IEDB recommended” algorithm for
peptide-MHCII binding prediction.®°

[0328] To calculate a sequence MHCII binding score, we
first break the sequence into each of its constituent 15mer
peptide fragments (sliding window of 15, stride of 1). For
each 15mer, we use allele-specific models to predict the
binding affinity to 8 common allelic variants of MHCII
(those encoded by HLA alleles DRB1*0101, DRB1*0301,
DRBI1*0401, DRB1*0701, DRB1*0801, DRBI1*1101,
DRB1*1301, and DRB1*1501). This set of alleles was also
used in the pioneering MHCII binding risk-reduction work
of de Groot and Martin. We convert the binding affinities
into z-scores for each allele using the mean and standard
deviation of affinities predicted for a large reference set of
15mers randomly selected from the human protein
sequences stored in UniProt.

[0329] We take the median z-score across alleles for each
15mer, and sum the positive median z-scores across the
sequence to get the final MHCII binding score. The median
is an appropriate aggregation because a peptide fragment
that binds several MHCII variants poses an immunogenic
risk to a larger population of patients than a fragment that
binds to only one. Dhanda et al., creators of the protein
deimmunization engine on the IEDB website, also aggregate
MHCII binding scores across alleles using the median. We
ignore negative scores in our sum across the sequence
because peptides that certainly don’t bind to MHCII (large
negative scores) should not offset peptides that bind MHCII
tightly (large positive score). The fraction of putative MHC
binding peptides for all unique 15mers in each sequence
were determined. The low-immunogenicity set (GAN -I)

Calculated Immunogenicity
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has fewer MHCII-binding peptides than other sets, suggest-
ing the GAN learns which 15mers to avoid regardless of our
sequence-score abstraction.

[0330] Structure Modeling, Calculated Isoelectric Point
(pD), and Negative Patch Surface Area Structure models
were calculated as Fab structures using the antibody mod-
eling tool within the Molecular Operating Environment
(MOE, Chemical Computing Group, Montreal, Canada).
Fab structures were used rather than Fvs in order to generate
more accurate Fv surface patches in the presence of constant
domains. The pls were calculated using the Ensemble Iso-
electric Point method in the Protein Properties tool within
MOE called as an SVL method. The electronegative patch
sizes were calculated using the Protein Patches method as an
SVL call within MOE with the Hydrophobic Min Area
(p_hminarea) changed from the default setting of 50 to 30
A? and the Charge Cutoff (p_gcutoff) changed from the
default setting of 40 to 20 A2,

[0331] GAN-Library Sequence Selection

[0332] Human repertoire contains a small subset of
sequences which have missing residues, non-standard cys-
tines, non-standard N-linked glycosylation sites, or potential
N-linked glycosylation sites. Sequences with these proper-
ties were not pulled from the training set and are therefore
also represented by a small subset in the GAN libraries. For
our phage library, we filtered out any sequences generated
by the GAN which had any of these properties, before
selecting final sequences.

[0333] Phage Expression of GAN-Library
[0334] Bacterial Strains
[0335] Escherichia coli One Shot™ TOP10 cells (F-mcrA

A(mrr-hsdRMS-merBC) ®80lacZAM15 A lacX74 recAl
araD139 A(araleu)7697 galU galK rpsL (StrR) endA1 nupG)
were purchased from Thermo Fisher Scientific and used for
phagemid DNA cloning. E. Cloni® 10G electrocompetent
cells (F-mcrA A(mrr-hsdRMS-merBC) endAl recAl
®80dlacZAM15 AlacX74 araD139 A(ara,leu)7697galU
galK rpsL. nupG A-tonA (StrR)) were purchased from Luci-
gen Corporation and were also used for phagemid DNA
cloning. E. coli SS520 electrocompetent cells (F'[proAB
lacl?Z AM15 Tnl0 (Tet®)] araD}139 A(ara-leu)7696 galE15
galK16 A(lac)X74 rpsL (Str®) hsdR2 (rg—mg+) mcrA
merB1) were purchased from Lucigen Corporation and used
as the host for phage library production.

[0336] Cloning

[0337] The phagemid pADL-20c (Antibody Design Labs)
was used for construction of the GAN sub-libraries and was
modified for expression of Fab antibody fragments as N-ter-
minal plII fusion proteins in E. coli. This vector utilizes the
bacterial pectate lysate (pelB) signal sequences for periplas-
mic translocation of fusion proteins, along with an ampicil-
lin resistance gene for growth and selection in transformed
E. coli. Ahexahistidine tag and a FLAG tag was added to the
C-terminus of the CH1 and kappa constant domains, respec-
tively, and the amber stop codon upstream of glIl was
removed to allow expression of the fusion protein in SS520
host cells.

[0338] Synthetic gene fragments encoding variable heavy
and light chains were first amplified individually using PCR
primers containing 22 base pairs of sequence complemen-
tary to the phagemid backbone. Next, PCRs were pooled by
germline and assembled sequentially into the phagemid
using NEBuilder® HiFi DNA Assembly Master Mix (New
England Biolabs). Transformations were performed using

Jul. 21, 2022

One Shot™ TOP10 or E. cloni 10G® cells, and the resulting
phagemid DNA was purified using ZymoPURE™ I Plas-
mid Midiprep Kit (Zymo Research).

[0339] Phage Library Production

[0340] E. coli SS520 host cells were electroporated as
described by the manufacturer using 250 ng of each sub-
library DNA. An aliquot of each transformation was plated
on 2xYT agar plates supplemented with 100 pg/ml. carbeni-
cillin and 2% glucose and incubated overnight at 30° C. The
resulting colonies were used for estimating library size and
for sequencing the variable heavy and light chains using
colony PCR. The remainder of the transformation was used
to inoculate 2xYT-CG (2xYT broth containing 50 pg/ml
carbenicillin and 2% glucose) at an ODy ,,,, of 0.07 and
incubated with shaking at 250 rpm and 37° C. until an OD,,
nm ~0.5. The cultures were then infected with M13KO7
helper phage (Antibody Design Labs) at a multiplicity of
infection (MOI) of 25 and incubated at 37° C. without
shaking for 30 minutes, followed by shaking at 200 rpm for
30 minutes. Cultures were centrifuged followed by medium
replacement in 2xYT-CK (2xYT supplemented with 50
ng/ml carbenicillin and 25 pg/ml kanamycin). After over-
night incubation at 30° C. and 200 rpm, the phage particles
were purified and concentrated by PEG/NaCl precipitation
and resuspended in PBS containing 0.5% BSA and 0.05%
Tween-20. Phage concentration was determined using a
spectrophotometer, assuming 1 unit at OD is equivalent to
5x10'? phage/mL. PEG-precipitated phage from each GAN
sub-library was normalized to 1x10'® phage/mL and serially
diluted 10-fold in 2% non-fat dry milk in PBS, in duplicate,
for use in the polyclonal phage ELISA.

[0341]

[0342] Single clones harboring a functional Fab fusion
protein were inoculated into 500 pul 2xYT-CTG (2xYT
broth supplemented with 50 pg/ml carbenicillin, 15 pg/ml
tetracycline, and 2% glucose) and cultivated in 96 deep-well
plates overnight at 37° C. with rigorous shaking. 5 ulL of the
overnight cultures was then transferred to new deep-well
plates containing 100 pL. 2xYT-CTG and incubated at 37° C.
with rigorous shaking until an ODgy, ,,,, ~0.5. M13KO7
helper phage was added to each well at MO125, and plates
were incubated without agitation at 37° C. for 1 hour before
medium replacement to 2xYT-CK and overnight incubation
with rigorous shaking at 30° C. Phage supernatants were
harvested after centrifugation and diluted 1:1 in 2% non-fat
dry milk in PBS for use in the monoclonal phage ELISA.

[0343] Phage ELISA

[0344] The amount of Fab displayed on phage was deter-
mined using ELISA. Briefly, 96-well MaxiSorp® assay
plates (Nunc) were coated overnight at 4° C. with anti-
human Fab (Millipore Sigma) diluted 1:500 in PBS, then
blocked in PBS containing 1% BSA for 1 hour at room
temperature (RT). Diluted phage preparations were added
and allowed to incubate for 1 hour at RT before captured
virions were detected using a 1:5000 dilution of anti-M13-
HRP (Santa Cruz Biotechnology) for 1 hour at RT. All
interval plate washes were performed 3 times in PBST (PBS
supplemented with 0.1% v/v Tween-20). ELISAs were
developed by addition of TMB solution (Thermo Fisher
Scientific) and quenched using 10% phosphoric acid. Absor-
bance was read at A, ,,,,- Phage supernatant from non-
transformed E. coli SS520 host cells was included as a
negative control.

Monoclonal Phage Production
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[0345] Selected CHO-Expressed Molecules

[0346] CHOKI1 Glutamine Synthetase (GS) knockout host
cells (Horizon Discovery, Cambridge, United Kingdom)
were maintained in CD OptiCHO (Thermo Fisher Scientific,
Waltham, Mass.) containing 4 mM glutamine. Cells were
cultured as previously described.”

[0347] The light chains (I.C) and heavy chains (HC)
containing appropriate signal peptides were cloned into an
in-house proprietary bicistronic PiggyBac transposon
expression vector’® in a sequential, 2-step manner using
Gibson assembly. Successful insertion of the intended cod-
ing sequences was confirmed by Sanger DNA sequencing.
Plasmid DNA was purified using a conventional silica-based
low endotoxin Zymo Research kit (Irvine, Calif.).

[0348] Cells, DNA and RNA were added to BTX
25—multi-well electroporation plates (Harvard Bioscience,
Holliston, Mass.) using a Tecan Freedom EVO (Mannedorf,
Switzerland) liquid handler. For each transfection, 2.4E6
cells were spun down and resuspended in 150 ulL of PFCHO
medium (Sigma-Aldrich, St. Louis, Mo.). 7.5 ug of DNA
and 2.5 ug of pJV95 transposase RNA were added to the
cells, then electroporated at 3175 uF capacitance, 290 V
voltage, 950 Q resistance in an ECM 830 electro manipu-
lator coupled to a HT 100 high throughput adaptor (BTX,
Holliston, Mass.). Both molecules were transfected in trip-
licate. Cells were transferred to 2mls of non-selective
medium in a 24 deep well plate (DWP) shaking at 220 rpm
at standard growth conditions and cultured for 2 days prior
to selection. After two days, cells were counted on a guava
flow cytometer (Luminex, Austin, Tex.); plates were spun
down and resuspended in 2mLs of selective CD OptiCHO
medium. Cells were counted and passaged every four to five
days thereafter.

[0349] Thirteen days after selection started and viability
was >90%, cells were seeded into proprietary production
medium at 8x105 ¢/mL in 3mLs in 24 DWPs under standard
growth conditions. On days 3, 6 and 8, cells were fed with
5% of the starting volume with Cell Boost7a and 0.5% Cell
Boost7b (Hyclone GE Healthcare Life Sciences). Cell
counts and glucose was measured as previously described,”®
On day 8, 50% glucose was supplemented to a final con-
centration of approximately 10 g/L.. On day 10, cells were
counted, spun down and filtered by centrifugation onto
24-deep well filter plates (Thomson, Oceanside, Calif.).
Titer was sampled by Ultra High-Performance Liquid Chro-
matography (UHPLC) Protein A affinity. Replicate wells
were pooled together for Protein A purification.

[0350] Biophysical Validation of CHO-Expressed Mol-
ecules

[0351] Sample Preparation

[0352] Samples were buffer exchanged against 10 diavol-

umes of 20 mM sodium chloride, 150 mM sodium chloride,
pH 7.1 (PBS) using a centrifugal filter with a 30 kDa
molecular weight cut off (Amicon). After buffer exchange,
samples were normalized to 1 mg/ml. using a Lunatic
protein concentration plate format instrument (Unchained
Labs).

[0353] Differential Scanning Fluorimetry

[0354] Thermal transition temperature(s) and weighted
shoulder scores were determined by DSF according to the
method previously described (Kerwin, 2019).

[0355] Self Interaction Nanoparticle Spectroscopy

[0356] SINS measurements were performed according to
the method previously described (Liu, 2013) Briefly, gold
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nanoparticles (Ted Pella) were conjugated overnight with an
80:20 ratio of anti-human and anti-goat antibodies (Jackson
Immuno Research). Unreacted sites were blocked using an
aqueous 0.1% (w/v) polysorbate 20 solution. Conjugated
gold nanoparticles were then concentrated by centrifugation
and removal of 95% of the supernatant. Analysis was carried
out in PBS (20 mM phosphate, 150 mM NaCl, pH 7.1) ata
protein concentration of 0.05 mg/ml. reacted with 5 ul of
concentrated conjugated gold nanoparticles. After a 2 hour
incubation, absorbance spectrum from 400-600 nm was
collected using a Spectrostar Nano plate reader at 2 nm
steps. The wavelength maximum of the spectrum peak is
reported.

[0357] Relative Solubility

[0358] Solubility was assessed according to the method
previously described (Kerwin, 2019). Analysis was done in
PBS buffer (20 mM sodium phosphate and 150 mM sodium
chloride pH 7.1) and a final PEG 10,000 concentration
ranging from 0% to 12%. Remaining soluble protein after
PEG incubation is reported.

[0359] Size Exclusion High Performance Liquid Chroma-
tography
[0360] Size exclusion high performance liquid chroma-

tography (SEC) was performed on a Dionex UltiMate 3000
HPLC System using a Waters XBridge Protein BEH SEC
200 A, 3.5 um column and a diode array detector collecting
at 280 nm. Separation was achieved under native conditions
with a 100 mM sodium phosphate, 250 mM sodium chlo-
ride, 10% acetonitrile v/v mobile-phase buffer at pH 6.8.
1. A method comprising:
generating, by a computing system including one or more
computing devices having one or more processors and
memory and using a generative adversarial network, a
plurality of first amino acid sequences, individual first
amino acid sequences of the plurality of first amino
acid sequences corresponding to antibody light chains;
generating, by the computing system and using the gen-
erative adversarial network, a plurality of second amino
acid sequences, individual second amino acid
sequences of the plurality of second amino acid
sequences corresponding to antibody heavy chains;
combining, by the computing system and using the gen-
erative adversarial network, a first amino acid sequence
of the plurality of first amino acid sequences with a
second amino acid sequence of the plurality of second
amino acid sequences to produce a third amino acid
sequence, the third amino acid sequence corresponding
to an antibody including a light chain corresponding to
the first amino acid sequence and a heavy chain cor-
responding to the second amino acid sequence; and
analyzing, by the computing system and using the gen-
erative adversarial network, the third amino acid
sequence with respect to an additional plurality of
amino acid sequences to produce an output, the addi-
tional plurality of amino acid sequences being included
in training data for the generative adversarial network
and the output indicating a measure of similarity
between the third amino acid sequence and at least a
portion of the additional plurality of amino acid
sequences.

2. The method of claim 1, wherein combining the first
amino acid sequence with the second amino acid sequence
includes concatenating the second amino acid sequence to
the first amino acid sequence.
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3. The method of claim 1, wherein:

the generative adversarial network includes a first gener-
ating component that implements a first model to
generate the plurality of first amino acid sequences and
a second generating component that implements a
second model to generate the plurality of second amino
acid sequences;

the first model includes a first function having one or more

first variables and one or more first weights; and

the second model includes a second function different

from the first function, the second function including
one or more second variables and one or more second
weights.

4. The method of claim 3, wherein the third amino acid
sequence is analyzed by a discriminator and the output is
provided to at least one of the first generating component or
the second generating component.

5. The method of claim 4, wherein the first generating
component modifies the first model based on the output.

6. The method of claim 4, wherein the second generating
component modifies the second model based on the output.

7. The method of claim 1, wherein the first amino
sequence includes at least a portion of a first variable region
of an antibody light chain and the second amino acid
sequence includes at least a portion of a first variable region
of an antibody heavy chain.

8. The method of claim 1, wherein the first amino acid
sequence includes at least a portion of a first variable region
and a first constant region of an antibody light chain and the
second amino acid sequence includes at least a portion of a
second variable region and a second constant region of an
antibody heavy chain.

9. The method of claim 1, comprising:

determining, by the computing system and based on the
output, that training of the first model is complete such that
the first model is a first trained model;

determining, by the computing system and based on the
output, that training of the second model is complete
such that the second model is a second trained model;

generating, by the computing system and using the first
trained model, a first additional amino acid sequence of
an additional light chain of an antibody;

generating, by the computing system and using the second
trained model, a second additional amino acid sequence
of an additional heavy chain of an antibody; and

combining, by the computing system, the first additional
amino acid sequence and the second additional amino
acid sequence to produce a third additional amino acid
sequence, the third additional amino acid sequence
including a light chain and a heavy chain of an addi-
tional antibody.

10. The method of claim 9, comprising evaluating, by the
computing system, the third additional amino acid sequence
with respect to one or more metrics, the one or more metrics
including at least one of a number of hydrophobic amino
acids included in the third additional amino acid sequence,
a number of positively charged amino acids included in the
third additional amino acid sequence, a number of nega-
tively charged amino acids included in the third additional
amino acid sequence, a number of uncharged amino acids
included in the third additional amino acid sequence, a level
of expression of the third additional amino acid sequence, a
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melting temperature of the third additional amino acid
sequence, or a level of self-aggregation of the third addi-
tional amino acid sequence.

11. The method of claim 9, comprising analyzing, by the
computing system and using the generative adversarial
network, the third additional amino acid sequence with
respect to a further plurality of amino acid sequences to
produce an additional output, wherein:

the further plurality of amino acid sequences is included

in additional training data for the generative adversarial
network;

the additional training data includes different amino acid

sequences of antibodies than the amino acid sequences
included in the training data; and

the additional output indicates an additional measure of

similarity between the third additional amino acid
sequence and at least a portion of the further plurality
of amino acid sequences.

12. A system comprising:

one or more hardware processors; and

one or more non-transitory computer readable media

storing computer-executable instructions that, when
executed by the one or more hardware processors,
cause the one or more processor to perform operations
comprising:

training a first model of a first generating component of a

generative adversarial network using a first training
dataset including a first number of amino acid
sequences of light chains of antibodies to produce a
first trained model,;

training a second model of a second generating compo-

nent of the generative adversarial network using a
second training dataset including a second number of
amino acid sequences of heavy chains of antibodies to
produce a second trained model, wherein training the
second generating component proceeds at a first rate
that is different from a second rate of training the first
generating component;

generating, using the first generating component, a first

additional number of first additional amino acid
sequences corresponding to antibody light chains;

generating, using the second generating component, a

second additional number of second additional acid
sequences corresponding to antibody heavy chains; and

combining, using the generative adversarial network, a
first amino acid sequence of the first additional number
of first additional amino acid sequences with a second
amino acid sequence of the second additional number
of second additional amino acid sequences to produce
a third amino acid sequence, the third amino acid
sequence corresponding to an antibody including a
light chain corresponding to the first amino acid
sequence and a heavy chain corresponding to the
second amino acid sequence.

13. The system of claim 12, wherein the second generat-
ing component is trained using a number of hobbled weights
to decrease a rate of training the second generating compo-
nent relative to an additional rate of training the second
generating component without the number of hobbled
weights.

14. The system of claim 12, wherein the second generat-
ing component is trained by slowing a gradient of the second
generating component.
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15. The system of claim 12 wherein the one or more
non-transitory computer readable media store additional
computer-executable instructions that, when executed by the
one or more hardware processors, cause the one or more
processor to perform additional operations comprising:

training the second generating component during a first

period of time;

determining that a first plurality of amino acid sequences

produced during an end portion of the first period of
time have a first level of quality;

training the first generating component for a second
period of time that includes the first period of time and
is longer than the first period of time;

determining that a second plurality of amino acid
sequences produced during an end portion of the sec-
ond period of time have the first level of quality;
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training the second generating component during a third
period of time that is subsequent to the second period
of time;

determining that a third plurality of amino acid sequences
produced during an end portion of the third period of
time have a second level of quality;

training the first generating component for a fourth period
of time that includes the third period of time and is
longer than the third period of time; and

determining that a fourth plurality of amino acid
sequences produced during an end portion of the fourth
period of time has the second level of quality.

16. The system of claim 15, wherein a total amount of

time elapsed to train the second generating component is
less than a total amount of time elapsed to train the first
generating component.
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