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IMPLEMENTING A GENERATIVE
MACHINE LEARNING ARCHITECTURE TO
PRODUCE TRAINING DATA FOR A
CLASSIFICATION MODEL

CROSS-REFERENCE TO RELATED
APPLICATION(S) AND PRIORITY CLAIM

This application 1s a U.S. national stage filing under 335
US.C. 371 from International Application No. PCT/

US2021/04°7939, filed on 27 Aug. 2021, and published as
WO 2022/047150 Al on 3 Mar. 2022, which claims priority
to U.S. Provisional Application No. 63/071,738 filed on 28
Aug. 2020 and enftitled “Implementing a Generative
Machine Learning Architecture to Produce Training Data for
a Classification Model,” the entirety of which are icorpo-
rated herein by reference.

BACKGROUND

Proteins are biological molecules that are comprised of
one or more chains of amino acids. Proteins can have
various functions within an organism. For example, some
proteins can be involved 1n causing a reaction to take place
within an organism. In other examples, proteins can trans-
port molecules throughout the organism. In still other
examples, proteins can be involved in the replication of
genes. Additionally, some proteins can have therapeutic
properties and be used to treat various biological conditions.
The structure and function of proteins are based on the
arrangement of amino acids that comprise the proteins. The
arrangement of amino acids for proteins can be represented
by a sequence of letters with each letter corresponding to an
amino acid at a respective position. The arrangement of
amino acids for proteins can also be represented by three
dimensional structures that not only indicate the amino acids
at various locations of the protein, but also indicate three
dimensional features of the proteins, such as an o.-helix or a

3-sheet.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure 1s illustrated by way of example
and not limitation 1n the figures of the accompanying
drawings, 1n which like references indicate similar elements.

FIG. 1 1s a diagram 1llustrating an example framework to
train a classification model using amino acid sequences
produced by a generative machine learning architecture, in
accordance with some one or more implementations.

FIG. 2 1s a diagram illustrating an example framework
that includes one or more generative adversarial networks
that produce amino acid sequences for training an inferential
model, 1n accordance with one or more implementations.

FIG. 3 1s a diagram 1llustrating an example framework
including a number of generative adversarial networks to
produce antibody sequences for training an inferential model
that classifies antibodies, 1n accordance with one or more
implementations.

FI1G. 4 1s a diagram 1llustrating an example framework to
generate an inferential model architecture based on amino
acid sequences produced by a number of generative adver-
sarial networks, 1n accordance with one or more implemen-
tations.

FIG. 5 1s a diagram 1llustrating an example framework to
determine amino acid sequences having a range of values for
a feature of a protein that are used to train an iniferential
model, 1n accordance with one or more implementations.
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FIG. 6 1s a flow diagram 1illustrating an example process
to classily amino acid sequences using an inferential model
that 1s trained using amino acid sequences produced by one
or more generative adversarial networks, 1n accordance with
one or more 1mplementations.

FIG. 7 1s a flow diagram illustrating an example process
to train an inferential model using amino acid sequences of
proteins produced by one or more generative adversarial
networks, 1 accordance with one or more implementations.

FIG. 8 illustrates a diagrammatic representation of a
machine in the form of a computer system within which a set
ol instructions may be executed for causing the machine to
perform any one or more of the methodologies discussed
herein, according to one or more implementations.

DETAILED DESCRIPTION

Proteins can have many beneficial uses within organisms.
In particular situations, proteins can be used to treat diseases
and other biological conditions that can detrimentally impact
the health of humans and other mammals. In various sce-
narios, proteins can participate in reactions that are benefi-
cial to subjects and that can counteract one or more biologi-
cal conditions being experienced by the subjects. In one or
more examples, proteins can also hind to target molecules
within an organism that may be detrimental to the health of
a subject. For these reasons, many individuals and organi-
zations have sought to develop proteins that may have
therapeutic benefits.

The development of proteins can be a time consuming and
resource 1ntensive process. Often, candidate proteins for
development can be identified as potentially having various
biophysical properties, structural features (e.g., negatively
charged patches, hydrophobic patches), three-dimensional
(3D) structures, and/or behavior within an organism. In
order to determine whether the candidate proteins actually
have the desired characteristics, the proteins can be synthe-
s1zed and then tested to determine whether the actual char-
acteristics of the synthesized proteins correspond to the
desired characteristics. Due to the amount of resources
needed to synthesize and test proteins for specified biophysi-
cal properties, structural features, 3D structures, and/or
behaviors, the number of candidate proteins synthesized for
therapeutic purposes 1s limited. In one or more situations,
the number of proteins synthesized for therapeutic purposes
can be limited by the loss of resources that takes place when
candidate proteins are synthesized and do not have the
desired characteristics. As used herein, structural features of
proteins can refer to features of one or more amino acids or
features of one or more groups of amino acids included 1n a
protein molecule.

Additionally, existing techniques that classity amino acid
sequences with regard to structural features rely on large
numbers of amino acid sequences for traiming because these
existing techniques use a large number of calculations
related to structural feature classification. For example,
existing technmiques may {follow first principles-based
approaches that analyze each atom or cluster of atoms 1n a
protein to determine whether a structural feature 1s present
in a proteimn. Due to the large amount of computational
resources needed to determine structural features using first
principles-based techniques, previous systems typically
made assumptions about the behavior of atoms or groups of
atoms of proteins. These assumptions can lead to inaccura-
cies 1n the classification of proteins based on structural
features.
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Inferential modeling techniques can provide an alterna-
tive to the existing first principles-based techniques that are
used to classity proteins based on structural features. How-
ever, the training of inferential modeling techniques can
utilize hundreds of thousands up to millions of protein
sequences. Conventional techniques that can be used to
generate amino acid sequences for the traiming of inferential
models can be limited 1n their scope and accuracy. In various
situations, previous computer-implemented techniques to
generate protein sequences can be limited by the amount of
data available and/or the types of data available that may be
needed by those previous techniques to accurately generate
protein sequences with specified characteristics. Addition-
ally, the techniques utilized to produce models that can
generate protein sequences with particular characteristics
can be complex and the know-how needed to produce
models that are accurate and eflicient 1s not readily available.
In one or more scenarios, the length of the protein sequences
produced by existing models can also be limited because the
accuracy of existing techniques can decrease as the lengths
of the proteins increases. Thus, the number of amino acid
sequences of proteins that can be accurately and efliciently
generated by previously utilized techniques 1s often limited.

The techniques, methods, and systems described herein
can be used to classity amino acid sequences of proteins
with inferential modeling techniques. Inferential models can
be training using amino acid sequences produced by gen-
crative machine learning architectures. The generative
machine learning architectures can include generative adver-
sarial networks. In addition, the amino acid sequences of the
proteins used to train the inferential models can be produced
by other generative machine learning architectures, such as
autoencoders. In various examples, multiple generating
components ol one or more generative adversarial networks
can be used to produce amino acid sequences to train
inferential models that classily amino acid sequences based
on structural features.

In one or more examples, an 1nitial version of a generating,
component of a generative machine learning architecture
can be trained to generate amino acid sequences of proteins
without regard to specific structural features of the proteins.
The generating component can then be trained further using
datasets of proteins that have one or more specified struc-
tural features. For example, the imitial version of the gener-
ating component can be trained using a first dataset of
proteins to produce a first modified version of the generating
component. The first dataset can include amino acid
sequences ol proteins having at least one hydrophobic
region with a first range of sizes, where the size of a
hydrophobic region corresponds to a number of amino acids
that are included in the hydrophobic region. In various
examples, the size of a hydrophobic region can correspond
to a number of exposed amino acids that are included 1n the
hydrophobic region. In various examples, an exposed amino
acid can include an amino acid that 1s located on a protein
such that the amino acid 1s available to interact with mol-
ecules other than the protein. After being trained, the first
modified version of the generating component can produce
first amino acid sequences that have at least a threshold
probability of having at least one hydrophobic region
included in the first range of sizes. Additionally, the initial
version of the generating component can be trained using a
second dataset of proteins to produce a second modified
version of the generating component. The second dataset can
include amino acid sequences of proteins having at least one
hydrophobic region with a second range of sizes that are
different from the first range of sizes. To illustrate, the first
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dataset can correspond to hydrophobic regions that are
relatively small, and the second dataset can correspond to
hydrophobic regions that are relatively large. Subsequent to
the training process with the second dataset, the second
modified version of the generating component can produce
second amino acid sequences that have at least a threshold
probability of having at least one hydrophobic region
included in the second range of sizes.

In various examples, the first amino acid sequences can be
provided to an inferential model architecture as first traiming
data corresponding to examples of amino acid sequences
having at least one hydrophobic region included in the first
range of sizes. The second amino acid sequences can be
provided to the inferential model architecture as second
training data corresponding to examples of amino acid
sequences having at least one hydrophobic region included
in the second range of sizes. In this way, the inferential
modeling architecture can be trained to distinguish between
amino acid sequences of proteins that have hydrophobic
regions corresponding to the first range of sizes and amino
acid sequences of proteins that have hydrophobic regions
corresponding to the second range of sizes. Accordingly, the
trained inferential modeling architecture can classily a given
protein based on 1ts amino acid sequence as having a
hydrophobic region included in the first range of sizes or a
hydrophobic region included 1n the second range of sizes.

By implementing an inferential modeling architecture to
classity amino acid sequences according to structural prop-
erties of proteins, the techniques, methods, frameworks, and
systems described herein reduce the amount of computa-
tional calculation and computational resources used to per-
form the classification 1n relation to existing systems and
frameworks. Additionally, the use of generative machine
learning architectures to produce training data for the infer-
ential models can provide a level of specificity, quantity, and
accuracy ol amino acid sequences to eflectively train the
inferential models that is not found in conventional systems
and techniques.

FIG. 1 1s a diagram illustrating an example framework
100 to train a classification model using amino acid
sequences produced by a generative machine learming archi-
tecture, 1n accordance with one or more 1mplementations.
The framework 100 can include a generative machine learn-
ing architecture 102. The generative machine learning archi-
tecture 102 can implement one or more models to generate
amino acid sequences. The amino acid sequences produced
by the generative machine learning architecture 102 can
correspond to proteins. In one or more examples, the
sequences produced by the generative machine learning
architecture 102 can include amino acid sequences of anti-
bodies. In various implementations, the one or more models
implemented by the generative machine learning architec-
ture 102 can include one or more functions.

In one or more implementations, the generative machine
learning architecture 102 can implement one or more neural
network technologies. For example, the generative machine
learning architecture 102 can implement one or more recur-
rent neural networks. Additionally, the generative machine
learning architecture 102 can implement one or more con-
volutional neural networks. Further, the machine learming
architecture 102 can implement a combination of recurrent
neural networks and convolutional neural networks. In one
or more examples, the generative machine learning archi-
tecture 102 can include one or more generative adversarial
networks (GANs). In these situations, the generative
machine learning architecture 102 can include a generating
component that produces amino acid sequences and a chal-
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lenging component that evaluates the amino acid sequences
produced by the generating component with respect to a
training dataset. In further examples, the generative machine
learning architecture 102 can include one or more autoen-
coders. In these implementations, the generative machine
learning architecture 102 can include at least one of an
encoder or a decoder. In one or more illustrative examples,
the generative machine learning architecture 102 can include
a variational autoencoder.

First protein sequence data 104 can include a number of
amino acid sequences that can be used 1n the training of the
generative machine learning architecture 102. The first pro-
tein sequence data 104 can include sequences obtained from
one or more data sources that store protein amino acid
sequences. The first protein sequence data 104 can include
amino acid sequences of one or more proteins. In various
examples, the first protein sequence data 104 can include
amino acid sequences of portions of one or more proteins. In
one or more illustrative examples, the first protein sequence
data 104 can include amino acid sequences of fibronectin
type III (FNIII) proteins, avimers, antibodies, VHH
domains, kinases, zinc fingers, combinations thereof, and the
like. In one or more additional examples, the first protein
sequence data 104 can include amino acid sequences of
portions of antibodies, such as at least a portion of one or
more complementarity determining regions (CDRs) of anti-
bodies, at least a portion of one or more light chains of
antibodies, at least a portion of one or more heavy chains of
antibodies, at least a portion of one or more variable regions
of antibodies, at least a portion of one or more constant
regions of antibodies, at least a portion of one or more hinge
regions of antibodies, at least a portion of one or more
antigen binding regions of antibodies, one or more combi-
nations thereof, and so forth.

In one or more implementations, the amino acid
sequences included 1n the first protein sequence data 104
used to train the generative machine learning architecture
102 can impact the amino acid sequences produced by the
generative machine learning architecture 102. For example,
the characteristics, biophysical properties, manufacturing
characteristics (e.g., titer, vield, etc.) and so forth, of the first
protein sequence data 104 can impact characteristics, bio-
physical properties, and/or manufacturing characteristics of
the amino acid sequences produced by the generative
machine learning architecture 102. To illustrate, 1n situations
where antibodies are included 1n the first protein sequence
data 104 provided to the generative machine learning archi-
tecture 102, the amino acid sequences produced by the
generative machine learning architecture 102 can corre-
spond to antibody amino acid sequences. In one or more
examples, 1n scenarios where T-cell receptors are included 1n
the first protein sequence data 104 provided to the generative
machine learning architecture 102, the amino acid sequences
produced by the generative machine learning architecture
102 can correspond to T-cell receptor amino acid sequences.
In one or more additional examples, 1n situations where
kinases are included in the first protein sequence data 104,
the amino acid sequences produced by the generative
machine learning architecture 102 can correspond to amino
acid sequences of kinases. In various implementations
where amino acid sequences of a variety of different types
of proteins are included 1n the first protein sequence data
104, the generative machine learning architecture 102 can
generate amino acid sequences having characteristics of
proteins generally and may not correspond to a particular
type of protein.
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During the training process, the generative machine learn-
ing architecture 102 can analyze amino acid sequences
produced by the generative machine learning architecture
102 with respect to the training sequences included in the
first protein sequence data 104 to evaluate a loss function of
the generative machine learming architecture 102. In one or
more examples, output of the loss function can be used to
modily the sequences generated by the generative machine
learning architecture 102. For example, output related to the
loss function can be used to modily one or more components
of the generative machine learning architecture 102, such as
an encoder, a decoder, and/or a generator of a generative
adversarial network, to produce amino acid sequences that
correspond more closely to amino acid sequences included
in the first protein sequence data 104. In one or more
examples, components of the generative machine learning
architecture 102 may be modified to minimize the loss
function.

After the generative machine learning architecture 102
has undergone a training process, one or more first traimned
models 106 can be generated that can produce amino acid
sequences of proteins. The one or more {irst trained models
106 can include one or more components of the generative
machine learning architecture 102 after a training process
using the first protein sequence data 104. In one or more
implementations, the one or more first trained models 106
can include a generator of a generative adversarial network
that has been trained using the first protein sequence data
104. Additionally, the one or more trained models 106 can
include at least one of an encoder or a decoder of an
autoencoder of the generative machine learning architecture
102 that has been trained using the first protein sequence
data 104.

In one or more examples, the tramning process for the
generative machine learning architecture 102 can be com-
plete after the function(s) implemented by one or more
components of the generative machine learning architecture
102 converge. The convergence of a function can be based
on the movement of values of model parameters toward
particular values as protein sequences are generated by one
or more components of the generative machine learning
architecture 102 and feedback 1s obtained 1n relation to at
least one loss function based on diflerences between the
amino acid sequences included 1n the first protein sequence
data 104 and the amino acid sequences generated by the
generative machine learning architecture 102.

In various implementations, the training of the generative
machine learning architecture 102 can be complete when the
protein sequences produced by the generative machine
learning architecture 102 have particular characteristics. To
illustrate, the amino acid sequences generated by the gen-
erative machine learning architecture 102 can be analyzed
by one or more solftware tools that can analyze amino acid
sequences to determine at least one of biophysical properties
of the amino acid sequences, structural features of the amino
acid sequences, or adherence to amino acid sequences
corresponding to one or more protein germlines. As used
herein, germline, can correspond to amino acid sequences of
proteins that are conserved when cells of the proteins
replicate. An amino acid sequence can be conserved from a
parent cell to a progeny cell when the amino acid sequence
of the progeny cell has at least a threshold amount of identity
with respect to the corresponding amino acid sequence 1n the
parent cell. In one or more illustrative examples, a portion of
an amino acid sequence of a human antibody that 1s part of
a kappa light chain that 1s conserved from a parent cell to a
progeny cell can be a germline portion of the antibody.
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In one or more 1mplementations, the analysis of amino
acid sequences can be used to determine whether training of
the generative machine learning architecture 102 1s to cease
or to continue. For example, the software tool can determine
that less than a threshold amount of amino acid sequences
produced by the generative machine learming architecture
102 have one or more specified characteristics. In these
scenarios, the training of the generative machine learning
architecture 102 may continue. Additionally, 1n situations
where the software tool determines that a threshold amount
of amimo acid sequences produced by the generative
machine learning architecture 102 do correspond to one or
more specified characteristics, the training of the generative
machine learning architecture 102 can stop.

The one or more first trained models 106 can undergo
transtfer learning at 108 based on second protein sequence
data 110. The transfer learning that 1s performed at 108 can
modily the one or more {irst trained models 106 based on the
amino acid sequences included i the second protein
sequence data 110. The transter learming that 1s performed at
108 can produce one or more second trained models 112 that
are modified versions of the one or more first trained models
106. In various examples, the transter learning that takes
place at 108 can include an additional training process of the
one or more first trained models 106 using training data
obtained from the second protein sequence data 110. By
using a training dataset to produce the second trained models
112 that 1s different from the training dataset used to produce
the first trained models 106, the second trained models 112
can produce amino acid sequences that can have some
general characteristics that correspond to the amino acid
sequences 1ncluded 1n the first protein sequence data 104 and
that also have one or more specified characteristics that
correspond to features of the proteins related to the amino
acid sequences mncluded 1n the second protein sequence data
110. In one or more examples, the number of amino acid
sequences 1ncluded in at least one of the first protein
sequence data 104 or the second protein sequence data 110
can be 1n the thousands of amino acid sequences up to tens
of thousands of amino acid sequences or more.

In various implementations, the one or more first trained
models 106 can be trained to produce the one or more
second trained models 112 1n a manner that 1s similar to the
training of the generative machine learning architecture 102
that produced the one or more first tramned models 106. In
one or more examples, components of the one or more {irst
trained models 106 may be modified to minimize at least one
loss function. Additionally, the training process for the one
or more {irst trained models 106 used to produce the one or
more second trained models 112 can be complete after one
or more functions implemented by one or more components
of the one or more first trained models 106 converge. In one
or more further examples, the traiming process used to
generate the one or more second trained models 112 from the
one or more first trained models 106 can be complete based
on an analysis of a software tool indicating that amino acid
sequences produced using the one or more second trained
models 112 corresponds to one or more specified criteria.
The one or more specified criteria can correspond to at least
one of one or more structural features of proteins having
amino acid sequences produced by the one or more second
trained models 112 or one or more biophysical properties of
proteins having amino acid sequences produced by the one
or more second tramned models 112.

In one or more examples, the second protein sequence
data 110 can 1include amino acid sequences of proteins that
have features that are different from the features of the
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proteins related to the first protein sequence data 104. In
various examples, the second protein sequence data 110 can
include a subset of the amino acid sequences included 1n the
first protein sequence data 104. In one or more additional
examples, the second protein sequence data 110 can include
a greater number of a group of amino acid sequences having
one or more specilied characteristics in relation to the
number ol amino acid sequences having the one or more
specified characteristics included 1n the f{first protein
sequence data 104. For example, the first protein sequence
data 104 can include amino acid sequences of proteins
having a variety of structural features. To 1llustrate, the first
protein sequence data 104 can include a number of amino
acid sequences of proteins having various sizes of hydro-
phobic regions, a number of amino acid sequences of
proteins having various sizes ol negatively charged regions,
a number of amino acid sequences of proteins having
various sizes ol positively charged regions, a number of
amino acid sequences of proteins various sizes of polar
regions, one or more combinations thereof, and the like.
Additionally, the second protein sequence data 110 can
include a greater number of amino acid sequences of pro-
teins that have hydrophobic regions with a specified range of
s1zes than the number of amino acid sequences included 1n
the first protein sequence data 104 that have the hydrophobic
regions with the specified range of sizes. In these scenarios,
the second trained models 112 can primarily produce amino
acid sequences of proteins having hydrophobic regions with
the specified range of sizes. In one or more further examples,
the second protein sequence data 110 can include a greater
number ol amino acid sequences of proteins that have
negatively charged regions with a specified range of sizes
than the number of amino acid sequences included in the
first protein sequence data 104 that have negatively charged
regions with the specified range of sizes. In these situations,
the one or more second trained models 112 can primarily
produce amino acid sequences of proteins having negatively
charged regions with the specified range of sizes.

In one or more implementations, the amino acid
sequences included 1n the second protein sequence data 110
can mnclude a filtered set of amino acid sequences. For
example, a set of amino acid sequences can be evaluated
according to one or more criteria. In various examples, at
least one of one or more software tools, one or more
diagnostic tools, or one or more analytical instruments can
be used to 1dentily amino acid sequences included 1n the set
of amino acid sequences that correspond to the one or more
criteria. The amino acid sequences that satisiy the one or
more criteria can then be added to the second protein
sequence data 110. In one or more 1llustrative examples, a
number of amino acid sequences can be evaluated to identify
proteins having at least one polar region for inclusion 1n the
second protein sequence data 110 that can be used to modify
the one or more first trained models 106 to produce the one
or more second trained models 112. In one or more addi-
tional 1illustrative examples, a number of amino acid
sequences can be evaluated to 1dentily proteins including at
least one positively charged region having a specified range
ol si1zes for inclusion in the second protein sequence data 110
that can be used to modily the one or more first tramned
models 106 to produce the one or more second trained
models 112.

In one or more illustrative examples, the transfer learning
at 108 can modily a first distribution of proteins having one
or more characteristics produced by the one or more first
trained models 106 such that a second distribution of pro-
teins having the one or more characteristics produced by the
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one or more second trained models 112 1s different from the
first distribution. For example, the one or more first trained
models 106 may produce proteins having at least one
hydrophobic region included 1n a first range of sizes, such as
from about 1 amino acid to about 15 amino acids with an
average size ol 7 amino acids and a standard deviation of 1.5
amino acids. Additionally, the one or more second trained
models 112 may produce proteins having at least one
hydrophobic region includes 1n a second range of sizes, such
as from about 9 amino acids to about 15 amino acids with
an average size of 12 amino acids and a standard deviation
of 0.5 amino acids. In these scenarios, the second protein
sequence data 110 can include amino acid sequences of
proteins having at least one hydrophobic region that corre-
sponds to the second range of sizes. In one or more addi-
tional examples, a probability of the one or more first trained
models 106 generating proteins having one or more char-
acteristics can be different from a probability of the one or
more second trained models 112 generating proteins having,
the one or more characteristics. To 1llustrate, the one or more
first trained models 106 may have from about a 10%
probability to about a 15% probability of generating amino
acid sequences of proteins having at least one negatively
charged region with no greater than 5 amino acids, while the
one or more second trained models 112 may have from about
a 95% probability to about a 99% probability of generating
amino acid sequences of proteins having at least one nega-
tively charged region with no greater than 5 amino acids. In
these situations, the second protein sequence data 110 can
include amino acid sequences of proteins having at least one
negatively charged patch with a size that 1s no greater than
S amino acids.

The one or more second trained models 112 can be
included in one or more modified generative machine learmn-
ing architectures 114. In one or more examples, the one or
more modified generative machine learning architectures
114 can include one or more generative adversarial net-
works. In these situations, the one or more second trained
models 112 can operate as one or more generating compo-
nents of the one or more generative adversarial networks. In
addition, the one or more modified generative machine
learning architectures 114 can include one or more autoen-
coders. In these scenarios, the one or more second trained
models 112 can operate as at least one of one or more
encoders or one or more decoders of the one or more
autoencoders.

The one or more modified generative machine learming
architectures 114 can generate amino acid sequences based
on input data 116. In one or more examples, the input data
116 can include a random or pseudo-random series of
numbers that can be used by one or more generative adver-
sarial networks included in the one or more modified gen-
erative machine learming architectures 114 to produce amino
acid sequences. Additionally, in implementations where the
one or more modified generative machine learning architec-
tures 114 include one or more autoencoders, the input data
116 can 1nclude an input sample that 1s provided to a decoder
in conjunction with an encoding produced by an encoder and
the decoder can use the mput sample to produce a number
of amino acid sequences.

In various examples, the one or more modified generative
machine learning architectures 114 can include a plurality of
generative machine learning architectures with individual
generative  machine learning architectures producing
sequences of amino acids that correspond to proteins that
have one or more specified structural features. For example,
the one or more modified generative machine learning

10

15

20

25

30

35

40

45

50

55

60

65

10

architectures 114 can include a first generative machine
learning architecture that produces amino acid sequences
that correspond to proteins having hydrophobic patches with
a first range of sizes, a second generative machine learning
architecture that produces amino acid sequences that corre-
spond to proteins having hydrophobic patches with a second
range ol sizes, and a third generative machine learming
architecture that produces amino acid sequences that corre-
spond to proteins having hydrophobic patches with a third
range of sizes. In one or more examples, there may be some
overlap between the sizes of hydrophobic patches included
in the first range of sizes and the second range of sizes and
between sizes of hydrophobic patches included 1n the second
range of sizes and the third range of sizes.

The amino acid sequences generated by the one or more
modified generative machine learning architectures 114 can
include traimning sequences 118 that can be used to train a
classification model architecture 120. The classification
model architecture 120 can determine a classification for
input sequences 122. In various examples, the classification
model architecture 120 can implement one or more inier-
ential modeling techniques. The one or more inferential
modeling techniques can include at least one of one or more
p-value techniques, one or more confidence interval tech-
niques, one or more null hypothesis techniques, one or more
Bayesian inference techniques, one or more Irequentist
inference techniques, one or more likelihood-based infer-
ence techniques, one or more Akaike imnformation criterion
(AIC) techniques, one or more minimum description length
techniques, or one or more structural inference techniques,
and the like. In one or more additional examples, the
classification model architecture 120 can include at least one
of one or more logistic regression techniques, one or Naive
Bayes techniques, one or more stochastic gradient descent
techniques, one or more K-nearest neighbors techniques,
one or more decision tree techniques, one or more random
forest techniques, or one or more support vector machine
techniques.

The mput sequences 122 can include amino acid
sequences of proteins that are to be classified by the clas-
sification model architecture 120. For example, the classi-
fication model architecture 120 can identily amino acid
sequences included 1n the mput sequences 122 that corre-
spond to a plurality of classifications of proteins. In one or
more examples, the classification model architecture 120
can 1dentify amino acid sequences that correspond to pro-
teins having one or more structural features. For example,
the classification model architecture 120 can differentiate
between amino acid sequences of a first group of proteins
having one or more first characteristics and amino acid
sequences ol a second group of proteins having one or more
second characteristics that are different from the one or more
first characteristics. In one or more illustrative examples, the
classification model architecture 120 can classily a first
number of amino acid sequences included in the nput
sequences 122 as having at least a threshold probability of
including one or more polar regions with a first range of
sizes and the classification model architecture 120 can
classily a second number of amino acid sequences included
in the mput sequences 122 as having at least a threshold
probability of including one or more polar regions with a
second range of sizes that 1s different from the first range of
s1zes. In one or more additional illustrative examples, the
classification model architecture 120 can classity a first
group of amino acid sequences included in the input
sequences 122 as antibodies having at least a threshold
probability of including one or more negatively charged
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regions and the classification model architecture 120 can
classity a second group of amino acid sequences included 1n
the mput sequences 122 as antibodies having at least a
threshold probability of including one or more hydrophobic
regions.

The output produced by the classification model archi-
tecture 120 can include classification data 124. The classi-
fication data 124 can indicate one or more classifications for
individual amino acid sequences included in the input
sequences 122. The classification data 124 can also indicate
one or more classifications for groups of amino acid
sequences included in the mput sequences 122. In one or
more examples, the classification data 124 can indicate a
first number of amino acid sequences included 1n the 1nput
sequences 122 having a first classification and a second
number of amino acid sequences included in the nput
sequences 122 having a second classification. The classifi-
cation data 124 can correspond to a prediction for one or
more classifications with respect to individual amino acid
sequence 1ncluded 1n the mput sequences 122. For example,
the classification data 124 for a given amino acid sequence
included in the 1nput sequences 122 can indicate a probabil-
ity of the amino acid sequence having a given classification.
In various examples, the classification data 124 can indicate
a plurality of probabilities for an amino acid sequence
included 1n the mput sequences 122 with respect to a
plurality of classifications. In one or more 1illustrative
examples, the classification data 124 can indicate a first
probability of an amino acid sequence included in the input
sequences 122 having a first classification and a second
probability of the amino acid sequence having a second
classification.

In at least some 1nstances, the classification data 124 can
be provided to a regression model architecture 126. The
regression model architecture 126 can implement one or
more regression techniques, such as at least one of one or
more linear regression techmiques, one or more logistic
regression techmiques, one or more ridge regression tech-
niques, one or more Lasso regression techniques, one or
more polynomial regression techniques, or one or more
Bayesian linear regression techniques, and the like. In one or
more examples, the regression model architecture 126 can
determine one or more characteristics of proteins based on
one or more classifications of the proteins indicated by the
classification data 124. For example, the classification data
124 can indicate one or more structural features of one or
more proteins and the regression model architecture 126 can
determine one or more biophysical properties of the one or
more proteins based on the one or more structural features
indicated by the classification data 124. In one or more
illustrative examples, the regression model architecture 126
can determine a measure ol stability for amino acid
sequences of proteins based on one or more classifications of
the proteins 1indicated by the classification data 124. In one
or more additional illustrative examples, the regression
model architecture 126 can determine a measure of solubil-
ity for amino acid sequences of proteins based on one or
more classifications of the proteins indicated by the classi-
fication data 124. In one or more further illustrative
examples, the regression model architecture 126 can deter-
mine one or more biophysical properties that correspond to
measures related to the manufacturing and/or downstream
processing of the proteins.

FIG. 2 1s a diagram illustrating an example framework
200 that includes one or more generative adversarial net-
works that produce amino acid sequences for traiming an
inferential model, 1n accordance with one or more 1mple-
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mentations. The framework 200 can include a generative
adversarial network architecture 202. The generative adver-
sarial network architecture 202 can include a generating
component 204 and a challenging component 206. The
generating component 204 can implement one or more
models to generate amino acid sequences based on input
provided to the generating component 204. In various imple-
mentations, the one or more models implemented by the
generating component 204 can include one or more func-
tions. The challenging component 206 can generate output
indicating whether the amino acid sequences produced by
the generating component 204 correspond to various char-
acteristics. The output produced by the challenging compo-
nent 206 can be provided to the generating component 204
and the one or more models implemented by the generating
component 204 can be modified based on the feedback
provided by the challenging component 206. In various
implementations, the challenging component 206 can ana-
lyze the amino acid sequences generated by the generating
component 204 with amino acid sequences of proteins
included in training data and generate an output indicating
an amount of correspondence between the amino acid
sequences produced by the generating component 204 and
the amino acid sequences of proteins provided to the chal-
lenging component 206 as training data. In one or more
illustrative examples, the analysis performed by the chal-
lenging component 206 with respect to the amino acid
sequences produced by the generating component 204 can
include a comparison between the amino acid sequences
included in the traiming data and the amino acid sequences
produced by the generating component 204.

In various implementations, the generative adversarial
network archutecture 202 can implement one or more neural
network technologies. For example, the generative adver-
sarial network architecture 202 can implement one or more
recurrent neural networks. Additionally, the generative
adversarial network architecture 202 can implement one or
more convolutional neural networks. In one or more 1mple-
mentations, the generative adversarial network architecture
202 can implement a combination of recurrent neural net-
works and convolutional neural networks. In one or more
additional examples, the generating component 204 can
include a generator and the challenging component 206 can
include a discriminator. In one or more further implemen-
tations, the generative adversarial network architecture 202
can include a Wasserstein generative adversarial network
(WGAN). In these scenarios, the generating component 204
can 1nclude a generator and the challenging component 206
can include a critic.

In the illustrative example of FIG. 2, an input vector 208
can be provided to the generating component 204 and the
generating component 204 can produce one or more gener-
ated sequences 210 from the mput vector 208 using one or
more models. In one or more implementations, the mnput
vector 208 can include noise data that 1s generated by a
random number generator or a pseudo-random number
generator. The generated sequence(s) 210 can be compared
by the challenging component 206 against sequences of
proteins included in first protein sequence data 212 that have
been structured according to one or more schemas. The first
protein sequence data 212 can include sequences of proteins
obtained from one or more data sources that store protein
sequences. The {first protein sequence data 212 can be
training data for the generative adversarial network archi-
tecture 202.

Based on similarities and/or differences between the gen-
erated sequence(s) 210 and the sequences obtained from the
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first protein sequence data 212, the challenging component
206 can generate a classification output 214 that indicates an
amount of similarity and/or an amount of difference between
the generated sequence 210 and sequences included in the
first protein sequence data 212. In one or more examples, the
challenging component 206 can label the generated
sequence(s) 210 as zero and the sequences obtained from the
first protein sequence data 212 as one. In these situations, the
classification output 214 can correspond to a number from O
and 1. In additional examples, the challenging component
206 can implement a distance function that produces an
output that indicates an amount of distance between the
generated sequence(s) 210 and the proteins included in the
first protein sequence data 212. In these scenarios, the
challenging component 206 can label the generated
sequence(s) 210 as -1 and the encoded amino acid
sequences obtained from the first protein sequence data 212
as 1. In implementations where the challenging component
206 implements a distance function, the classification output
214 can be a number from -co to oo. In at least some
examples, the amino acid sequences obtained from the first
protein sequence data 212 can be referred to as ground truth
data.

The protemn sequences included in the first protein
sequence data 212 can be subject to data preprocessing 216
before being provided to the challenging component 206. In
one or more implementations, the first protein sequence data
212 can be arranged according to a classification system,
also referred to as a classification schema, before being
provided to the challenging component 206. The data pre-
processing 216 can include pairing amino acids included in
the proteins of the first protein sequence data 212 with
numerical values that can represent structure-based posi-
tions within the proteins. The numerical values can include
a sequence of numbers having a starting point and an ending
point. In an illustrative example, a T can be paired with the
number 43 indicating that a Threonine molecule 1s located at
a structure-based position 43 of a specified protein domain
type. In one or more illustrative examples, structure-based
numbering can be applied to any general protein type, such
as fibronectin type III (FNIII) proteins, avimers, antibodies.
VHH domains, kinases, zinc fingers, and the like.

In one or more 1mplementations, the classification system
implemented by the data preprocessing 216 can designate a
particular number of positions for certain regions ol pro-
teins. For example, the classification system can designate
that portions of proteins have particular functions and/or
characteristics can have a specified number of positions. In
various situations, not all of the positions included in the
classification system may be associated with an amino acid
because the number of amino acids 1n a specified region of
a protein may vary between proteins. To 1llustrate, the
number of amino acids 1n a region of a protein can vary for
different types of proteins. In one or more examples, posi-
tions of the classification system that are not associated with
a particular amino acid can indicate various structural fea-
tures of a protein, such as a turn or a loop. In an illustrative
example, a classification system for antibodies can indicate
that heavy chain regions, light chain regions, and hinge
regions have a specified number of positions assigned to
them and the amino acids of the antibodies can be assigned
to the positions according to the classification system.

The data used to train the generative adversarial network
architecture 202 can impact the amino acid sequences pro-
duced by the generating component 204. For example, 1n
situations where antibodies are included 1n the first protein
sequence data 212 provided to the challenging component
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206, the amino acid sequences generated by the generating
component 204 can correspond to antibody amino acid
sequences. In one or more additional examples, 1n scenarios
where T-cell receptors are included in the first protein
sequence data 212 provided to the challenging component
206 the amino acid sequences generated by the generating
component 204 can correspond to T-cell receptor amino acid
sequences. In one or more additional examples, 1n situations
where kinases are included in the first protein sequence data
212 provided to the challenging component 206, the amino
acid sequences generated by the generating component 204
can correspond to amino acid sequences ol kinases. In
implementations where amino acid sequences of a variety of
different types of proteins are included 1n the first protein
sequence data 212 provided to the challenging component
206, the generating component 204 can generate amino acid
sequences having characteristics of proteins generally and
may not correspond to a particular type of protein. Further,
in various examples, the amino acid sequences produced by
the generating component 204 can correspond to the types of
proportions of amino acid sequences included in the first
protein sequence data 212 provided to the challenging
component 206.

The output produced by the data preprocessing 216 can
include structured sequences 218. The structured sequences
218 can include a matrix indicating amino acids associated
with various positions of a protein. In one or more examples,
the structured sequences 218 can include a matrix having
columns corresponding to different amino acids and rows
that correspond to structure-based positions of proteins. For
each element 1n the matrix, a 0 can be used to indicate the
absence of an amino acid at the corresponding position and
a 1 can be used to indicate the presence of an amino acid at
the corresponding position. In situations where a position
represents a gap 1n an amino acid sequence, the row asso-
ciated with the position can comprise zeroes lor each
column. The generated sequence(s) 210 can also be repre-
sented using a vector according to a same or similar number
scheme as used for the structured sequences 218. In at least
some 1llustrative examples, the structured sequences 218
and the generated sequence(s) 210 can be encoded using a
method that may be referred to as a one-hot encoding
method.

After the generative adversarial network architecture 202
has undergone a training process, one or more first traimned
generating components 220 can be generated that can pro-
duce amino acid sequences of proteins. In one or more
examples, the training process for the generative adversarial
network architecture 202 can be complete after the function
(s) implemented by the generating component 204 and the
function(s) implemented by the challenging component 206
converge. The convergence of a function can be based on the
movement of values of model parameters toward specified
values as protein sequences are generated by the generating
component 204 and feedback 1s obtained from the challeng-
ing component 206. In various implementations, the training
of the generative adversarial network architecture 202 can
be complete when the protein sequences generated by the
generating component 204 have one or more specified
characteristics. To 1llustrate, the amino acid sequences gen-
crated by the generating component 204 can be analyzed by
a soltware tool that can analyze amino acid sequences to
determine at least one of biophysical properties of the amino
acid sequences, structural features of the amino acid
sequences, or adherence to amino acid sequences corre-
sponding to one or more protein germlines.
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The one or more first trained generating components 220
can undergo transier learning at 222 based on second protein
sequence data 224. The transier learning that 1s performed at
222 can modily the one or more first trained generating
components 220 based on the amino acid sequences
included 1 the second protein sequence data 224. The
transier learning that 1s performed at 222 can be performed
using one or more modified generative adversarial network
architectures 226. The one or more modified generative
adversarial network architectures 226 can include at least a
portion of the one or more first trained generating compo-
nents 220 and one or more additional challenging compo-
nents. In various examples, the transfer learning that takes
place at 222 can include an additional traiming process of the
one or more first trained generating components 220 using
training data obtained from the second protein sequence data
224. By using a training dataset to produce the one or more
second trained generating components 228 that 1s different
from the training dataset used to produce the one or more
first trained generating components 220, the one or more
modified generative adversarial network architectures 226
can produce amino acid sequences that can have some
general characteristics that correspond to the amino acid
sequences 1ncluded 1n the first protein sequence data 212 and
that also have one or more specified characteristics that
correspond to features of the proteins related to the amino
acid sequences included in the second protein sequence data
224,

In various implementations, the one or more first trained
generating components 220 can be further trained using the
second protein sequence data 224 as part of the transfer
learning at 222 to produce one or more second trained
generating components 228 1 a manner that 1s similar to the
training of the generative adversarial network architecture
202 that produced the one or more first trained generating
components 220. In one or more examples, components of
the one or more modified generative adversarial network
architectures 226 can be trained to minimize at least one loss
function. Additionally, the training process used in the
transter learning at 222 to produce the one or more second
trained generating components 228 can be complete after
one or more modified functions implemented by the one or
more modified generative adversarial network architectures
226 converge. In one or more further examples, the training
process used to generate the one or more second trained
generating components 228 from the one or more {irst
trained generating components 220 can be complete based
on an analysis of a software tool indicating that amino acid
sequences produced using the one or more modified gen-
erative adversarial network architectures 226 corresponds to
one or more specified criteria. The one or more specified
criteria can correspond to at least one of one or more
structural features of proteins or one or more biophysical
properties ol proteins.

In one or more examples, the second protein sequence
data 224 can include amino acid sequences of proteins that
have features that are different from the features of the
proteins related to the first protein sequence data 212. In
various examples, the second protein sequence data 224 can
include a subset of the amino acid sequences included 1n the
first protein sequence data 212. In one or more additional
examples, the second protein sequence data 224 can 1nclude
a greater number of a group of amino acid sequences having
one or more specilied characteristics in relation to the
number ol amino acid sequences having the one or more
characteristics included in the first protein sequence data
212. For example, the first protein sequence data 212 can
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include amino acid sequences of proteins having a variety of
structural features. To 1llustrate, the first protein sequence
data 212 can include a number of amino acid sequences of
proteins having one or more sizes of hydrophobic regions, a
number of amino acid sequences of proteins having one or
more sizes ol negatively charged regions, a number of amino
acid sequences ol proteins having one or more sizes of
positively charged regions, a number of amino acid
sequences of proteins one or more sizes ol polar regions, one
or more combinations thereof, and the like. In one or more
implementations, the second protein sequence data 224 can
include amino acid sequences of proteins that have a greater
number of amino acid sequences of proteins having a subset
ol the properties of the proteins included 1n the first protein
sequence data 212, such as a greater number of amino acid
sequences of proteins that have hydrophobic regions with a
specified range of sizes than the number of amino acid
sequences included in the first protein sequence data 212
that have the hydrophobic regions with the specified range
of sizes. In these scenarios, the one or more second trained
generating components 228 can primarily produce amino
acid sequences of proteins having hydrophobic regions with
the specified range of sizes.

In one or more implementations, the amino acid
sequences 1ncluded 1n the second protein sequence data 224
can mnclude a filtered set of amino acid sequences. For
example, a set of amino acid sequences can be evaluated
according to one or more criteria. In various examples, at
least one of one or more software tools, one or more
diagnostic tools, or one or more analytical instruments can
be used to 1dentily amino acid sequences included 1n the set
of amino acid sequences that correspond to the one or more
criteria. The amino acid sequences that satisiy the one or
more criteria can then be added to the second protein
sequence data 224. In one or more 1illustrative examples, a
number of amino acid sequences can be evaluated to identify
proteins having at least one polar region for inclusion 1n the
second protein sequence data 224. In these scenarios, the
amino acid sequences that include at least one polar region
can be used to modily the one or more first trained gener-
ating components 220 during the transier learning at 222 to
produce the one or more second trained generating compo-
nents 228 that can produce amino acid sequences of proteins
having at least one polar region.

The one or more second trained generating components
can generate amino acid sequences based on second 1nput
data 230. In one or more examples, the second mput data
230 can include a random or pseudo-random series of
numbers that can be used by the one or more second trained
generating components 228 to produce amino acid
sequences. In various examples, the one or more second
trained generating components 228 can include multiple
generating components that each generate amino acid
sequences ol protemns having a different distribution of
values for a structural feature. For example, the second
trained generating components 228 can include a first gen-
erating component that produces amino acid sequences of
proteins having one or more negatively charged regions with
a first range of sizes and a second generating component that
produces amino acid sequences ol proteins having one or
more negatively charged regions with a second range of
s1zes. In one or more examples, there may be some overlap
between the sizes of negatively charged regions included in
the first range of sizes and the second range of sizes.

The amino acid sequences generated by the one or more
second trained generating components 228 can include
training sequences 232 that can be used to train an inferential
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model architecture 234. The inferential model architecture
234 can obtain mput sequences 236 and the inferential
model architecture 234 can determine classification data 238
for the mput sequences 236. The classification data 238 can
indicate one or more classifications for individual 1nput
sequences 236. The mput sequences 236 can include amino
acid sequences of proteins that are to be classified by the
inferential model architecture 234. For example, the infer-
ential model architecture 234 can identily amino acid
sequences included 1n the mput sequences 236 that corre-
spond to a plurality of classifications of proteins. In one or
more examples, the inferential model architecture 234 can
identify amino acid sequences that correspond to proteins
having one or more structural features. To illustrate, the
inferential model architecture 234 can differentiate between
amino acid sequences of a first group of proteins having one
or more {irst characteristics and amino acid sequences of a
second group of proteins having one or more second char-
acteristics that are different from the one or more first
characteristics.

Although not shown 1n the illustrative example of FIG. 2,
in at least some 1nstances, the classification data 238 can be
provided to a regression model architecture that can deter-
mine one or more characteristics of proteins based on one or
more classifications of the proteins imndicated by the classi-
fication data 238. For example, the classification data 238
can indicate one or more structural features of one or more
proteins and the regression model architecture can determine
one or more biophysical properties of the one or more
proteins based on the one or more structural features 1ndi-
cated by the classification data 238. The one or more
biophysical properties can include properties that can be
used to characterize a protein molecule, such as solubility,
decomposition temperature (e.g., melting temperature), bio-
activity, 1mmunogenicity, viscosity, pKa, aggregation
behavior, unfolding behavior, one or more combinations
thereol, and the like. In various examples, the regression
model architecture can also determine values related to the
production of proteins corresponding to the input sequences
236, such as vield, purity, titer, and so forth.

FIG. 3 1s a diagram 1llustrating an example framework
300 including a number of generative adversarial networks
to produce antibody sequences for training an inferential
model that classifies antibodies, 1n accordance with one or
more 1mplementations. The framework 300 can include a
generative adversarial network 302. The generative adver-
sarial network 302 can implement one or more neural
network technologies. For example, the generative adver-
sarial network 302 can implement one or more recurrent
neural networks. Additionally, the generative adversarial
network 302 can implement one or more convolutional
neural networks. In certain implementations, the generative
adversarial network 302 can implement a combination of
recurrent neural networks and convolutional neural net-
works.

The generative adversanial network 302 can include a
light chain generating component 304 and a heavy chain
generating component 306. The light chain generating com-
ponent 304 can implement one or more {irst models to
generate data corresponding to amino acid sequences of at
least a portion of light chains of antibodies. In addition, the
heavy chain generating component 306 can implement one
or more second models to generate data corresponding to
amino acid sequences of at least a portion of heavy chains
of antibodies. The light chain generating component 304 can
implement one or more first models to generate amino acid
sequences of light chains of antibodies based on first input
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data 308 provided to the light chain generating component
304. The heavy chain generating component 306 can 1imple-
ment one or more second models to generate amino acid
sequences ol heavy chains of antibodies based on second
input data 310. The first input data 308 can include first noise
data generated by a random number generator or a pseudo-
random number generator. The second mput data 310 can
include second noise data generated by a random number
generator or a pseudo-random number generator.

The light chain generating component 304 can implement
one or more first models to produce light chain sequences
312 based on the first input data 308. The one or more {first
models can include one or more functions having one or
more variables, one or more parameters, one or more
weights, or one or more combinations thereof. The light
chain sequences 312 can comprise data corresponding to
amino acids that are located at positions of antibody light
chains. The light chain sequences 312 can include sequences
of amino acids of antibody light chains that are encoded
according to one or more encoding schemes. In various
examples, the light chain sequences 312 can include data
corresponding to amino acids at individual positions of
antibody light chains that 1s encoded according to a schema.
In one or more 1illustrative examples, the light chain
sequences 312 can include amino acid sequences of anti-
body light chains that are encoded according to a one-hot
encoding scheme.

The heavy chain generating component 306 can imple-
ment one or more second models to produce heavy chain
sequences 314 based on the second input data 310. The one
or more second models can include one or more additional
functions having one or more variables, one or more param-
cters, one or more weights, or one or more combinations
thereof. The heavy chain sequences 314 can comprise data
corresponding to amino acids that are located at positions of
antibody heavy chains. The heavy chain sequences 314 can
include sequences of amino acids of antibody light chains
that are encoded according to one or more encoding
schemes. In various examples, the heavy chain sequences
314 can include data corresponding to amino acids at
individual positions of antibody heavy chains that 1is
encoded according to a schema. In one or more 1llustrative
examples, the heavy chain sequences 314 can include amino
acid sequences of antibody heavy chains that are encoded
according to a one-hot encoding scheme.

The light chain sequences 312 and the heavy chain
sequences 314 can be provided to a sequence combining
component 316. The sequence combining component 316
can combine at least one light chain sequence 312 and at
least one heavy chain sequence 314 to generate a combined
antibody sequence 318. In various implementations, the
sequence combining component 316 can combine a single
light chain sequence 312 with a single heavy chain sequence
314. A combined antibody sequence 318 can include data
corresponding to amino acids located at positions of one or
more light chain sequences 312 and one or more heavy chain
sequences 314.

In one or more examples, the sequence combining com-
ponent 316 can generate a combined antibody sequence 318
by concatenating one or more light chain sequences 312 and
one or more heavy chain sequences 314. For example, the
sequence combiming component 316 can add a first string of
alphanumeric characters representative of an antibody light
chain sequence to a second string of alphanumeric charac-
ters representative of an antibody heavy chain sequence to
generate a combined antibody sequence 318. The combined
antibody sequence 318 can include a first portion that
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corresponds to a light chain sequence 312 and a second
portion that corresponds to a heavy chain sequence 314. To
illustrate, a first number of positions of a combined antibody
sequence 318 can correspond to amino acids of a light chain
sequence 312 and a second number of positions of the
combined antibody sequence 318 that are after, or subse-
quent to, the first number of positions can correspond to a
heavy chain sequence 314. In one or more illustrative
examples, the combined antibody sequences 318 generated
by the sequence combimng component 316 can include a
string of letters representing an amino acid sequence of an
antibody that 1s produced by adding a string of letters
corresponding to an amino acid sequence included a heavy
chain sequence 314 after a last letter of a string of letters
corresponding to an amino acid sequence included 1n a light
chain sequence 312. To 1llustrate, a light chain sequence 312
can terminate 1n VESG and a heavy chain sequence 314 can
begin with EIQM. The sequence combining component 316
can combine the light chain sequence 312 with the heavy
chain sequence 314 by adding the heavy chain sequence 314
starting with EIQM after the VESG of the light chain
sequence 312. In one or more additional examples, a first
number of positions of a combined antibody sequence 318
can correspond to amino acids of a heavy chain sequence
314 and a second number of positions of the combined
antibody sequence 318 that are after the first number of
positions can correspond to a light chain sequence 312. In
various implementations, the combined antibody sequence
318 can correspond to amino acids of one or more light
chain sequences 312 and one or more heavy chain sequences
314 arranged according to a schema.

In one or more scenarios, the sequence combining com-
ponent 316 can include a number of computation layers. In
one or more examples, the sequence combining component
316 can include one or more first computation layers to
generate combined antibody sequences 318 by concatenat-
ing one or more light chain sequences 312 with one or more
heavy chain sequences 314. Additionally, the sequence
combining component 316 can include one or more second
computation layers that modify output from the one or more
first computation layers. In various examples, the one or
more second computation layers can be utilized 1n situations
where relationships between amino acid sequences and one
or more biophysical properties are not accounted for by the
one or more first computation layers. Additionally, the one
or more second computation layers can be utilized 1n situ-
ations where nonlinear relationships are present between the
heavy chain amino acid sequences 314 and the light chain
amino acid sequences 312. Further, the one or more second
computation layers can be utilized in scenarios where there
are various interactions between the light chain sequences
312 and the heavy chain sequences 314 that can be captured
by the one or more first computation layers.

In one or more additional implementations, the light chain
generating component 304 can generate amino acid
sequences of a portion of antibody light chains. For
example, the light chain generating component 304 can
generate amino acid sequences of at least a portion of one or
more variable regions of antibody light chains. In various
examples, the light chain generating component 304 can
generate amino acid sequences of at least a portion of one or
more antigen binding regions of antibody light chains. In
one or more illustrative examples, the light chain generating
component 304 can generate amino acid sequences ol at
least a portion of one or more complementarity determining
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light chain generating component 304 can generate amino
acid sequences ol one or more constant regions of antibody
light chains.

The heavy chain generating component 306 can generate
amino acid sequences of a portion of antibody heavy chains.
To 1llustrate, the heavy chain generating component 306 can
generate amino acid sequences of at least a portion of one or
more variable regions of antibody heavy chains. In one or
more examples, the heavy chain generating component 306
can generate amino acid sequences of at least a portion of
one or more antigen binding regions of antibody heavy
chains. Additionally, the heavy chain generating component
306 can generate amino acid sequences of at least a portion
of one or more complementarity determining regions
(CDRs) of antibody heavy chains. Further, the heavy chain
generating component 306 can generate amino acid
sequences of one or more constant regions ol antibody
heavy chains.

In situations where the light chain generating component
304 generates a portion of an amino acid sequence of an
antibody light chain, a remainder of the amino acid sequence
of the antibody light chain can be obtained from one or more
sources of amino acid sequences of antibody light chains. In
one or more illustrative examples, the light chain generating
component 304 can generate amino acid sequences corre-
sponding to one or more CDRs of antibody light chains and
the framework regions for the antibody light chains can be
obtained from one or more data sources that store amino acid
sequences of antibody light chain framework regions. In one
or more additional examples, a template antibody light chain
can be obtained that indicates one or more regions that are
to be generated by the light chain generating component
304. For example, a template antibody sequence can include
an amino acid sequence ol an antibody light chain that 1s
missing a CDR3. In these scenarios, the light chain gener-
ating component 304 can generate amino acid sequences of
CDR3s that can be used 1n conjunction with the template
antibody sequence to produce amino acid sequences of
antibody light chains. In further examples, 1n 1implementa-
tions where a template antibody sequence includes amino
acid sequences of constant regions of antibody light chains,
the light chain generating component 304 can generate
amino acid sequences of variable regions of antibody light
chains that can be used in conjunction with the template
antibody sequence to produce amino acid sequences of
antibody light chains. In implementations where the light
chain generating component 304 generates a portion of an
amino acid sequence of antibody light chains, the output
from the light chain generating component 304 can be
combined with additional amino acid sequences of missing
regions of the antibody light chains to produce the light
chain sequences 312. In this way, the light chain sequences
312 can be assembled using amino acid sequences produced
by the light chain generating component 304 and additional
amino acid sequences obtained from one or more additional
data sources that fill 1n portions of antibody light chains that
are absent from the amino acid sequences produced by the
light chain generating component 304.

In addition, 1n 1nstances where the heavy chain generating
component 306 generates a portion of an amino acid
sequence ol an antibody heavy chain, a remainder of the
amino acid sequence of the antibody heavy chain can be
obtained from one or more sources of amino acid sequences
of antibody heavy chains. For example, the heavy chain
generating component 306 can generate amino acid
sequences corresponding to one or more CDRs of antibody
heavy chains and the framework regions for the antibody
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heavy chains can be obtained from one or more data sources
that store amino acid sequences ol antibody heavy chain
framework regions. In one or more additional examples, a
template antibody heavy chain can be obtained that indicates
one or more regions that are to be generated by the heavy
chain generating component 306. To illustrate, a template
antibody sequence can include an amino acid sequence of an
antibody heavy chain that 1s missing a CDR3. In these
scenarios, the heavy chain generating component 306 can
generate amino acid sequences of CDR3s that can be used
in conjunction with the template antibody sequence to
produce amino acid sequences of antibody heavy chains. In
one or more examples, 1n implementations where a template
antibody sequence includes amino acid sequences of con-
stant regions of antibody heavy chains, the heavy chain
generating component 306 can generate amino acid
sequences of variable regions of antibody heavy chains that
can be used 1 conjunction with the template antibody
sequence to produce amino acid sequences ol antibody
heavy chains. In implementations where the heavy chain
generating component 306 generates a portion of an amino
acid sequence of antibody heavy chains, the output from the
heavy chain generating component 306 can be combined
with additional amino acid sequences to produce the heavy
chain sequences 314. In this way, the heavy chain sequences
314 can be assembled using amino acid sequences produced
by the heavy chain generating component 306 and additional
amino acid sequences obtained from one or more additional
data sources that fill 1n portions of antibody heavy chains
that are absent from the amino acid sequences produced by
the heavy chain generating component 306.

The generative adversarial network 302 can include a
challenging component 320. The challenging component
320 can generate output indicating that the combined anti-
body sequences 318 satisty or do not satisfy one or more
criteria. The challenging component 320 can produce clas-
sification output 322 that can be provided to the light chain
generating component 304 and the heavy chain generating
component 306. The challenging component 320 can evalu-
ate the combined antibody sequences 318 with respect to
training data that comprises the first antibody sequence data
324. The first antibody sequence data 324 can correspond to
amino acid sequences of a number of antibodies. For a given
antibody, the first antibody sequence data 324 can include a
pairing of an antibody light chain and an antibody heavy
chain. In one or more illustrative examples, the first antibody
sequence data 324 can include amino acid sequences of
antibodies produced by one or more mammals. The {first
antibody sequence data 324 can also include amino acid
sequences of one or more 1sotypes of classes of antibodies,
such as IgA antibodies, IgD antibodies, IgE antibodies, 1gG
antibodies, and/or IgM antibodies.

The challenging component 320 can compare the com-
bined antibody sequences 318 generated by the sequence
combining component 316 with at least a portion of the
amino acid sequences included 1n the first antibody sequence
data 324. The classification output 322 generated based on
the comparisons can indicate an amount of correspondence
between a combined antibody sequence 318 with respect to
at least a portion of the amino acid sequences included 1n the
first antibody sequence data 324. For example, based on
similarities and/or differences between a combined antibody
sequence 318 and at least a portion of the amino acid
sequences included 1n the first antibody sequence data 324,
the classification output 322 generated by the challenging
component 320 can indicate an amount of similarity and/or
an amount of difference between the combined antibody
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sequence 318 and at least a portion of the amino acid
sequences mncluded 1n the first antibody sequence data 324.
The classification output 322 can be based on a type of
architecture associated with the generative adversarial net-
work 302. For example, for a first type of generative
adversarial network, the challenging component 320 can
generate a classification output 322 of 1 for a combined
antibody sequence 318 that has at least a threshold amount
of correspondence with respect to amino acid sequences
included 1n training data provided to the challenging com-
ponent 320. Also, for the first type of generative adversarial
network, the challenging component 320 can generate a
classification output of O for a combined antibody sequence
318 that has less than a threshold amount of correspondence
with respect to amino acid sequences included in training
data provided to the challenging component 320. In various
examples, for the first type of generative adversarial net-
work, the challenging component 320 can generate classi-
fication output 322 that labels a combined antibody
sequence 318 using a numerical scale from O to 1 based on
an amount ol similarity between the combined antibody
sequence 318 and amino acid sequences included 1n training,
data provided to the challenging component 320.

Additionally, 1n situations where the generative adver-
sarial network 302 implements a second type of architecture,
such as a Wasserstein GAN, the challenging component 320
can execute a distance function that produces a classification
output 322 that indicates an amount of distance between the
combined antibody sequences 318 and amino acid
sequences included 1n training data provided to the chal-
lenging component 320. For example, the challenging com-
ponent 320 can produce a classification output 322 that
includes a number from —oo to oo that indicates a distance
between a combined antibody sequence 318 and at least a
portion of the amino acid sequences included 1n the first
antibody sequence data 324. In various examples, the train-
ing data obtained from the first antibody sequence data 324
can be referred to as ground truth data.

The amino acid sequences included 1n the first antibody
sequence data 324 can be subject to data preprocessing 326
betfore being provided to the challenging component 320. In
one or more implementations, the data preprocessing 326
can nclude arranging the first antibody sequence data 324
according to a classification system before being provided to
the challenging component 320. For example, the data
preprocessing 326 can include pairing amino acids included
in the amino acid sequences of the first antibody sequence
data 324 with numerical values that can represent structure-
based positions within the antibodies. The numerical values
can include a sequence of numbers having a starting point
and an ending point. The first antibody sequence data 324
can separately store amino acid sequences of antibody light
chains and amino acid sequences of antibody heavy chains.
Further, the first antibody sequence data 324 can store amino
acid sequences of combinations of antibody light chains and
antibody heavy chains.

The output produced by the data preprocessing 326 can
include structured sequences 328. The structured sequences
328 can include a matrix indicating amino acids associated
with various positions of an antibody. In one or more
examples, the structured sequences 328 can include a matrix
having columns corresponding to different amino acids and
rows that correspond to structure-based positions of anti-
bodies. For each element 1in the matrix, a 0 can be used to
indicate the absence of an amino acid at the corresponding
position and a 1 can be used to indicate the presence of an
amino acid at the corresponding position. In situations
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where a position represents a gap 1n an amino acid sequence,
the row associated with the position can comprise zeroes for
cach column. In at least some illustrative examples, the
structured sequences 328 and the combined antibody
sequence(s) 318 can be encoded using a method that may be
referred to as a one-bot encoding method. In various 1mple-
mentations, the structured sequences 328 can include an
amino acid sequence ol an antibody light chain followed by
an amino acid sequence of an antibody heavy chain. In one
or more additional implementations, the structured
sequences 328 can include an amino acid sequence of an
antibody heavy chain followed by an amino acid sequence
of an antibody light chain. The arrangement of antibody
light chains and antibody heavy chains in the structured
sequences 328 can correspond to the arrangement of anti-
body light chains and antibody heavy chains included 1n the
combined antibody sequences 318.

In various examples, training of the light chain generating
component 304 and the heavy chain generating component
306 can take place asynchronously. For example, the train-
ing of the heavy chain component 306 may cease for a
period of time while training of the light chain generating
component 304 continues. In one or more examples, the
light chain generating component 304 and the heavy chain
generating component 306 can train concurrently for a
period of time. During this period of time, the training of the
heavy chain generating component 306 may progress faster
than training of the light chain generating component 304. In
these situations, the training of the heavy chain generating
component 306 may cease for a period of time that the light
chain generating component 304 continues to train. In at
least some examples, sequences generated by the heavy
chain generating component 306 may be evaluated at vari-
ous points 1n time to determine a metric with regard to
quality of the amino acid sequences generated by the heavy
chain generating component 306. In various examples, the
training of the heavy chain generating component 306 may
cease when the metric satisfies one or more threshold
metrics. The light chain generating component 304 may
continue to train until the sequences produced by the light
chain generating component 304 satisfy the one or more
threshold metrics. After sequences from both the light chain
generating component 304 and the heavy chain generating
component 306 satisfy the one or more threshold metrics,
the light chain generating component 304 and the heavy
chain generating component 306 can continue to train. In
one or more examples, training of the light chain generating
component 304 and the heavy chain generating component
306 can train until one or more metrics used to evaluate the
sequences produced by the light chain generating compo-
nent 304 and the heavy chain generating component 306
diverge by at least a threshold amount.

In one or more 1llustrative examples, the training of the
heavy chain generating component 306 can implement
hobbled weights such that the traiming of the light chain
generating component 304 and the traiming of the heavy
chain generating component 306 proceed at relatively simi-
lar rates. Additionally, the training of the heavy chain
generating component 306 may proceed with slower gradi-
ents such that the traiming of the light chain generating
component 304 and the training of the heavy chain gener-
ating component 306 proceed at relatively similar rates.

After the generative adversarial network 302 has under-
gone a training process, one or more first trained generating
components 330 can be generated that can produce amino
acid sequences of antibodies. The one or more first trained
generating components 330 can include at least one of the
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light chain generating component 304 or the heavy chain
generating component 306 after a training process using the
first antibody sequence data 324. In one or more examples,
the training process for the generative adversarial network
302 can be complete after the classification output 322
indicates at least a threshold amount of correspondence
between the combined antibody sequences 318 and the
amino acid sequences included 1n at least a portion of the
first antibody sequence data 324. In one or more additional
implementations, the training of the generative adversarial
network 302 can be complete when the combined antibody
sequences 318 have one or more specified characteristics. To
illustrate, the amino acid sequences generated by the
sequence combining component 316 can be analyzed by a
software tool that can analyze amino acid sequences to
determine at least one of biophysical properties of the amino
acid sequences, structural features of the amino acid
sequences, or adherence to amino acid sequences corre-
sponding to one or more protein germlines. The character-
istics of the combined antibody sequences 318 determined
by the analysis of the software tool 1n relation to specified
characteristics can be used to determine whether or not the
training ol the generative adversarial network 302 1s com-
plete.

The one or more first trained generating components 330
can undergo transifer learning at 332 based on second
antibody sequence data 334. The transfer learning that is
performed at 332 can modily the one or more first trained
generating components 330 based on the amino acid
sequences included 1n the second antibody sequence data
334. The transier learning that 1s performed at 332 can be
performed using one or more modified generative adver-
sarial network architectures 336. The one or more modified
generative adversarial network architectures 336 can include
at least a portion of the one or more first trained generating
components 330 and one or more additional challenging
components. In one or more illustrative examples, the one or
more modified generative adversarial network architectures
336 can include the light chain generating component 304
alter undergoing a traiming process using the first antibody
sequence data 324 and the heavy chain generating compo-
nent 304 after undergoing a training process using the first
antibody sequence data 324.

In various examples, the transfer learning that takes place
at 332 can comprise a training process that 1s i addition to
the training of the generative adversarial network 302. By
using a training dataset to produce the one or more second
trained generating components 338 that 1s different from the
training dataset used to produce the one or more first traimned
generating components 330, the one or more second trained
generating components 338 can produce amino acid
sequences that can have some general characteristics that
correspond to the amino acid sequences included 1n the first
antibody sequence data 324 and that also have one or more
speciflied characteristics that correspond to features of the
proteins related to the amino acid sequences included in the
second antibody sequence data 334.

In various implementations, the one or more {irst trained
generating components 330 can be further trained using the
second antibody sequence data 334 as part of the transfer
learning at 332 to produce the one or more second trained
generating components 338 1n a manner that 1s similar to the
training of the generative adversarial network 302 that
produced the one or more first trained generating compo-
nents 330. In one or more examples, components of the one
or more modified generative adversarial network architec-
tures 336 can be trained to minimize at least one loss
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function. Additionally, the training process used in the
transier learning at 332 to produce the one or more second
trained generating components 338 can be complete after
one or more modified functions implemented by the one or
more modified generative adversarial network architectures
336 converge. In one or more further examples, the training
process used to generate the one or more second trained
generating components 338 from the one or more {irst
trained generating components 330 can be complete based
on an analysis ol a software tool indicating that amino acid
sequences produced using the one or more modified gen-
erative adversarial network architectures 336 correspond to
one or more specified criteria. The one or more specified
criteria can correspond to at least one of one or more
structural features of proteins or one or more biophysical
properties of proteins. In one or more implementations, the
training process used to generate the one or more second
trained generating components 338 can evaluate sequences
produced by the one or more modified generative adversarial
network architectures 336 based on at least one of agreement
with amino acid sequences produced in relation to one or
more germline genes, a measure of immunogenicity of the
amino acid sequences, or agreement with CDR H3 amino
acid sequences. A principal component analysis (PCA)
model may be used to determine when to stop training the
one or more modified generative adversarial network archi-
tectures 336. In various examples, the measure of 1immuno-
genicity can correspond to major histocompatibility com-
plex (MHC) Class II binding affinity.

In one or more examples, the second antibody sequence
data 334 can include amino acid sequences of proteins that
have features that are different from the features of the
proteins related to the first antibody sequence data 324. In
various examples, the second antibody sequence data 334
can include a subset of the amino acid sequences included 1n
the first antibody sequence data 324. In one or more addi-
tional examples, the second antibody sequence data 334 can
include a greater number of a group of amino acid sequences
having one or more specified characteristics 1n relation to the
number of amino acid sequences having the one or more
specified characteristics included in the first antibody
sequence data 324. For example, the first antibody sequence
data 324 can imclude amino acid sequences of proteins
having a variety of structural features. To 1llustrate, the first
antibody sequence data 324 can include a number of amino
acid sequences of antibodies having various sizes ol hydro-
phobic regions, a number of amino acid sequences of
proteins having various sizes of negatively charged regions,
a number of amino acid sequences ol proteins having
various sizes ol positively charged regions, a number of
amino acid sequences ol proteins various sizes of polar
regions, one or more combinations thereotf, and the like. In
one or more 1implementations, the second antibody sequence
data 334 can include amino acid sequences of proteins that
have a greater number of amino acid sequences of proteins
having a subset of the properties of the proteins included in
the first antibody sequence data 324, such as a greater
number of amino acid sequences ol proteins that have
hydrophobic regions with a specified range of sizes than the
number of amino acid sequences included 1n the first anti-
body sequence data 324 that have the hydrophobic regions
with the specified range of sizes. In these scenarios, the one
or more second traimned generating components 338 can
primarily produce amino acid sequences of proteins having,
hydrophobic regions with the specified range of sizes. In one
or more 1nstances, the second antibody sequence data 334
can separately store amino acid sequences of antibody light
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chains and antibody heavy chains. In additional scenarios,
the second antibody sequence data 334 can store amino acid
sequences ol combined antibody light chains and antibody
heavy chains.

In one or more implementations, the amino acid
sequences included 1n the second antibody sequence data
334 can include a filtered set of amino acid sequences. For
example, a set of amino acid sequences can be evaluated
according to one or more criteria. In various examples, at
least one of one or more software tools, one or more
diagnostic tools, or one or more analytical instruments can
be used to 1dentity amino acid sequences included 1n the set
of amino acid sequences that correspond to the one or more
criteria. The amino acid sequences that satisfy the one or
more criteria can then be added to the second antibody
sequence data 334. In one or more 1illustrative examples, a
number of amino acid sequences can be evaluated to identify
antibodies having at least one negatively charged region for
inclusion in the second antibody sequence data 334 that can
be used to modily the one or more first trained generating
components 330 during the transier learning at 332 to
produce the one or more second trained generating compo-
nents 338. In one or more additional illustrative examples,
the amino acid sequences included 1n the second antibody
sequence data 334 can correspond to antibodies having a
threshold level of expression in humans or a threshold
amount of binding aflinity to one or more molecules, such as
MHC class II molecules. By using amino acid sequences 1n
the transfer learning at 332 that have one or more specified
characteristics, the one or more modified generative adver-
sarial network architectures 336 can be trained to produce
amino acid sequences of antibodies that have at least a
threshold probability of having the one or more specified
characteristics.

The one or more second trained generating components
can generate amino acid sequences based on third input data
340. In one or more examples, the third input data 340 can
include a random or pseudo-random series of numbers that
can be used by the one or more second trained generating
components 338 to produce amino acid sequences. In vari-
ous examples, the one or more second trained generating
components 338 can include multiple generating compo-
nents that each generate amino acid sequences of antibodies
having a different distribution of values for a structural
feature or a biophysical property. For example, the second
trained generating components 338 can include a first gen-
erating component that produces amino acid sequences of
antibody light chains having one or more negatively charged
regions with a first range of sizes and a second generating
component that produces amino acid sequences of antibody
light chains having one or more negatively charged regions
with a second range of sizes. In one or more examples, there
may be some overlap between the sizes of negatively
charged regions included in the first range of sizes and the
second range of sizes.

The amino acid sequences generated by the one or more
second traimned generating components 338 can include
training sequences 342 that can be used to train an inferential
model architecture 344. In one or more examples, the
training sequences can include at least one light chain and at
least one heavy chain that correspond to individual antibod-
ies. In one or more additional examples, the training
sequences 342 can include at least one of one or more
antibody light chains or one or more antibody heavy chains.

The inferential model architecture 344 can determine
classification data 346 for the input sequences 348 that
indicates one or more classifications for individual mput
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sequences 348. The mput sequences 348 can include amino
acid sequences of antibodies that are to be classified by the
inferential model architecture 344. In various examples, the
input sequences 348 can include at least one of amino acid
sequences ol antibody light chains, amino acid sequences of 5
antibody heavy chains, or amino acid sequences of combi-
nations of antibody light chains and antibody heavy chains.
For example, the inferential model architecture 344 can
identify amino acid sequences included in the input
sequences 348 that correspond to a plurality of classifica- 10
tions of antibodies. In one or more examples, the inferential
model architecture 344 can diflerentiate between amino acid
sequences of a first group of antibodies having one or more
first characteristics and amino acid sequences of a second
group of antibodies having one or more second character- 15
istics that are diflerent from the one or more first character-
1stics.

Although not shown in the illustrative example of FIG. 3,
in at least some 1nstances, the classification data 346 can be
provided to a regression model architecture that can deter- 20
mine one or more characteristics of antibodies based on one
or more classifications of the antibodies indicated by the
classification data 346. For example, the classification data
346 can indicate one or more structural features of one or
more antibodies and the regression model architecture can 25
determine one or more biophysical properties of the one or
more antibodies based on the one or more structural features
indicated by the classification data 346. The one or more
biophysical properties can include solubility, decomposition
temperature (e.g., melting temperature), bioactivity, immu- 30
nogenicity, viscosity, pKa, aggregation behavior, unfolding
behavior, one or more combinations thereot, and the like. In
various examples, the regression model architecture can also
determine values related to the production of antibodies
corresponding to the mput sequences 348, such as yield, 35
purity, titer, and so forth, based on classifications of the input
sequences 1ndicating one or more biophysical properties
and/or one or more structural features ol proteins corre-
sponding to the mput sequences 348.

FIG. 4 1s a diagram 1llustrating an example framework 40
400 to generate an inferential modeling architecture 402
based on amino acid sequences produced by a number of
generative adversarial networks, 1n accordance with some
implementations. The framework 400 can include a genera-
tive adversanal network architecture 404 that can be tramned 45
using 1nitial protein sequence data 406. The generative
adversarial network architecture 404 can include one or
more generating components and one or more challenging
components. During the training process, the one or more
generating components of the generative adversarial net- 50
work architecture 404 can produce amino acid sequences of
proteins that are evaluated by the one or more challenging,
components of the generative adversarial network architec-
ture 404 with respect to the initial protein sequence data 406.
The 1nitial protein sequence data 406 can be training data for 55
the generative adversarnial network architecture 404. The
training process performed with respect to the generative
adversarial network architecture 404 can produce one or
more trained generating components 408. In one or more
illustrative examples, the one or more trained generating 60
components 408 can produce amino acid sequences of
antibodies. In these scenarios, the one or more trained
generating components 408 can, in one or more 1implemen-
tations, include at least one light chain generating compo-
nent and at least one heavy chain generating component. 65

The one or more trained generating components 408 can
be used as part of transter learning 410. The transfer learning,
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410 can include additional training of the one or more
trained generating components 408 using training datasets
that are different from the initial protein sequence data 406.
By training additional generative adversarial network archi-
tectures that include the one or more trained generating
components 408 with different datasets, the additional gen-
crative adversarial networks can generate amino acid
sequences of proteins that can have one or more specified
characteristics. In the illustrative example of FIG. 4, the
transier learning 410 can take place with respect to a first

modified generative adversarial network (GAN) architecture
412, a second modified GAN architecture 414, up to an Nth

modified GAN architecture 416. The first modified GAN
architecture 412, the second modified GAN architecture, up
to the Nth modified GAN architecture 416 can individually
include one or more challenging components and one or
more generating components with the one or more gener-
ating components for each modified GAN architecture 412,
414, up to 416 being based on the one or more trained
generating components 408.

The first modified CAN architecture 412 can be trained as
part of the transier learning 410 using first additional protein
sequence data 418. In addition, the second modified GAN
architecture 414 can be tramned as part of the transfer
learning 410 using second additional protein sequence data
420. Further, the Nth modified GAN architecture 416 can be
trained as part of the transfer learning 410 using Nth
additional protein sequence data 422. The proteins having
amino acid sequences included 1n each of the first additional
protein sequence data 418, the second additional protein
sequence data 420, and the Nth additional protein sequence
data 422 can have characteristics that are difierent from one
another. For example, the proteins having amino acid
sequences 1ncluded in the first additional protein sequence
data 418 can have at least one of structural features or
biophysical properties that are different from the proteins
having amino acid sequences included 1n the second addi-
tional protein sequence data 420 and the Nth additional
protein sequence data 422. The proteins having amino acid
sequences 1ncluded in the second additional protein
sequence data 420 can also be different from proteins having,
amino acid sequences included in the Nth additional protein
sequence data 422.

In one or more examples, the first additional protein
sequence data 418 can include amino acid sequences of
proteins having at least one of a first structural feature or a
first biophysical property, the second additional protein
sequence data 420 can include amino acid sequences of
proteins having at least of a second structural feature or a
second biophysical property, and the Nth additional protein
sequence data 422 can include amino acid sequences of
proteins having at least a third structural feature or a third
biophysical property. For example, the first additional pro-
tein sequence data 418 can include amino acid sequences of
proteins having one or more hydrophobic regions, the sec-
ond additional protein sequence data 420 can include amino
acid sequences ol proteins having one or more positively
charged regions, and the Nth additional protein sequence
data 422 can include amino acid sequences of proteins
having one or more polar regions. In one or more additional
examples, the first additional protein sequence data 418 can
include amino acid sequences of proteins having at least a
threshold probability of binding to one or more specified
antigens, the second additional protein sequence data 420
can mnclude amino acid sequences of proteins having at least
a threshold melting temperature, and the Nth additional
protein sequence data 422 can include amino acid sequences
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of proteins having at least a threshold percentage of being a
high molecular weight (HMW) protein. In various examples,
an HMW protein can have a molecular weight that 1s at least
100 kilodaltons (kDa), at least 150 kDa, at least 200 kDa, or
at least 250 kDa. In this way, the first modified GAN
architecture 412 can produce at least a threshold amount of
amino acid sequences ol proteins having at least one of a
first biophysical property or a first structural feature, the
second modified GAN architecture 414 can produce at least
a threshold amount of amino acid sequences of proteins
having at least one of a second biophysical property or a
second structural feature, and the Nth modified GAN archi-
tecture 416 can produce at least a threshold amount of amino
acid sequences of proteins having at least one of a third
biophysical property or a third structural feature.

In one or more additional implementations, the first
additional protein sequence data 418, the second additional
protein sequence data 420, and the Nth additional protein
sequence data 422 can include amino acid sequences of
proteins having at least one of a same biophysical property
or a same structural feature, while having different distri-
butions for values for the same biophysical property and/or
the same structural feature. For example, the first additional
protein sequence data 418 can include amino acid sequences
of proteins 1including at least one negatively charged region
having a first range of sizes, the second additional protein
sequence data 420 can include amino acid sequences of
proteins including at least one negatively charged region
having a second range of sizes, and the Nth additional
protein sequence data 422 can include amino acid sequences
of proteins 1ncluding at least one negatively charged region
having a third range of sizes. The first range of sizes can be
different from the second range of sizes and the third range
of sizes and the second range of sizes can be diflerent from
the third range of sizes. In one or more examples, there can
be an amount of overlap between the first range of sizes and
the second range of sizes. In one or more additional
examples, there can be an amount of overlap between the
second range of sizes and the third range of sizes. In these
scenar10os, the first modified GAN architecture 412 can
produce at least a threshold amount of amino acid sequences
ol proteins including at least one negatively charged region
having the first range of sizes, the second modified GAN
architecture 414 can produce at least a threshold amount of
amino acid sequences of proteins including at least one
negatively charged region having the second range of sizes,
and the Nth modified GAN architecture 416 can produce at
least a threshold amount of amino acid sequences of proteins
including at least one negatively charged region having the
third range of sizes.

The first modified GAN architecture 412 can produce a
number of first traimning sequences 424 for the inferential
modeling architecture 402. Additionally, the second modi-
fied GAN architecture 414 can produce a number of second
training sequences 426 and the Nth modified GAN archi-
tecture 416 can produce a number of Nth training sequences
428 for the inferential modeling architecture 402. The train-
ing sequences 424, 426, 428 can be used to train the
inferential modeling architecture 402 to classify amino acid
sequences of proteins having diflerent biophysical proper-
ties and/or different structural features. Additionally, the
training sequences 424, 426, 428 can be used to train the
inferential modeling architecture 402 to classily amino acid
sequences of proteins having values of one or more struc-
tural features and/or values of one or more biophysical
properties that are included in different ranges. In various
examples, the inferential modeling architecture 402 can
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classity amino acid sequences of proteins according to a first
classification 430, a second classification 432, up to an Nth
classification 434. The first classification 430 can corre-
spond to one or more features of amino acid sequences
included in the first training sequences 424, the second
classification 432 can correspond to one or more features of
amino acid sequences included in the second training
sequences 426, and the Nth classification 434 can corre-
spond to one or more features of amino acid sequences
included in the Nth training sequences 428.

In one or more examples, based on the first training
sequences 424, the second training sequences 426, and the
Nth training sequences 428, the inferential modeling archi-
tecture 402 can be trained to 1dentily amino acid sequences
of proteins that have a first biophysical property and/or a first
structural feature, amino acid sequences of proteins that
have a second biophysical property and/or a second struc-
tural feature, and amino acid sequences of proteins that have
a third biophysical property and/or a third structural feature.
To 1llustrate, the inferential modeling architecture 402 can
be trained to identify first amino acid sequences of first
proteins having at least a threshold melting temperature,
second amino acid sequences of second proteins having at
least a threshold viscosity, and third amino acid sequences of
third proteins have at least a threshold measure of solubility
in water. In one or more additional i1llustrative examples, the
inferential modeling architecture 402 can be tramned to
identify first amino acid sequences of first proteins having
one or more hydrophobic regions, second amino acid
sequences ol second proteins having one or more positively
charged regions, and third amino acid sequences of third
proteins having one or more regions having a pH that 1s less
than 7. In one or more further illustrative examples, the
inferential modeling architecture 402 can be trained to
identify first amino acid sequences of {irst proteins having
one or more polar regions that include a first number of
amino acids (e.g., 1 to 4 amino acids), second amino acid
sequences ol second proteins having one or more polar
regions that include a second number of amino acids (e.g. 5
to 8 amino acids), and third amino acid sequences of third
proteins having one or more polar regions that include a
third number of amino acids (e.g., 9 to 13 amino acids). Still
further, the inferential modeling architecture 402 can be
trained to 1dentity first amino acid sequences of first proteins
having a first range ol measures ol aggregation, second
amino acid sequences of second proteins having a second
range of measures of aggregation, and third amino acid
sequences of third proteins having a third range of measures
ol aggregation.

In various implementations, the inferential modeling
architecture 402 can determine a probability of amino acid
sequences corresponding to one or more classifications. To
illustrate, one or more mput sequences 436 can be provided
to the inferential modeling architecture 402. The inferential
modeling architecture 402 can then determine one or more
probabilities that the one or more mput sequences 436
correspond to one or more classifications. For example, the
inferential modeling architecture 402 can determine a first
probability that an input sequence 436 corresponds to the
first classification 430, a second probability that the mput
sequence 436 corresponds to the second classification 432,
and a third probability that the mput sequence 436 corre-
sponds to the Nth classification 434. The inferential mod-
cling architecture 402 can determine a classification corre-
sponding to the mput sequence 436 by analyzing the first
probability, the second probability, and the third probability
with respect to a threshold probability. In situations where
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the first probability, the second probability, or the third
probability correspond to the threshold probability, the infer-
ential modeling architecture 402 can determine that the
classification having the respective probability correspond-
ing to the threshold probability 1s 1dentified as the classifi-
cation for the mput sequence 436. For example, the infer-
ential modeling architecture 402 can determine that a
probability associated with the mput sequence 436 with
respect to the second classification 432 satisfies the thresh-
old probability. In these scenarios, the inferential modeling
architecture 402 can classily the input sequence 436 accord-
ing to the second classification 432.

In one or more scenarios, the inferential modeling archi-
tecture 402 can produce GAN training feedback 438 that can
be used in the transfer learning 410. In one or more
examples, the GAN training feedback 438 can indicate one
or more amino acid sequences that the inferential modeling
architecture 402 determined to have less than a threshold
probability of corresponding to at least one of the first
classification 430, the second classification 432, up to the
Nth classification 434. In various examples, the one or more
amino acid sequences that have less than a threshold prob-
ability of corresponding to at least one of the first classifi-
cation 430, the second classification 432, up to the Nth
classification 434 can be associated with an inconclusive
classification. That 1s, the one or more amino acid sequences
may have been diflicult for the inferential modeling archi-
tecture 402 to classily. In various examples, the inferential

modeling architecture 402 can be trained iteratively based
on the GAN training feedback 438.

The GAN tramning feedback 438 can be used in the
transier learning 410 to train at least one of the first modified
(GAN architecture 412, the second modified GAN architec-

ture 414, up to the Nth modified GAN architecture 416. For
example, the training of at least one of the first modified

(GAN architecture 412, the second modified GAN architec-
ture 414, up to the Nth modified GAN architecture 416 can
be impacted by the GAN training feedback 438 with respect
to the modification of at least one of one or more parameters,
one or more weights, or one or more functions of the first
modified GAN architecture 412, the second modified GAN
architecture 414, and/or up to the Nth modified CAN archi-
tecture 416. In one or more additional examples, the GAN
training feedback 438 can modily the training sequences
provided to the inferential modeling architecture 402 by at
least one of the first modified GAN architecture 412, the
second modified GAN architecture 414, or up to the Nth
modified GAN architecture 416. To illustrate, 1n situations
where the GAN training feedback 438 indicates one or more
amino acid sequences that do not satisiy one or more criteria
for at least one classification of the inferential modeling
architecture 402, at least one of the {first training sequences
424, the second training sequences 426, or up to the Nth
training sequences 428 can be modified such that amino acid
sequences having at least a threshold amount of identity with
the one or more sequences included in the GAN ftraining
teedback 438 are not included 1n the first training sequences
424, the second traiming sequences 426, and/or up to the Nth
training sequences 428. In one or more 1llustrative examples,
the GAN training feedback 438 can indicate an amino acid
sequence that does not satisfy one or more criteria for at least
one classification of the inferential modeling architecture
402. In these 1nstances, the transier learning 410 can 1include
monitoring the amino acid sequences produced by the first
modified GAN architecture 412, the second modified GAN
architecture 414, and/or up to the Nth modified GAN
architecture 416 for amino acid sequences that have at least
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a threshold amount of identity with the amino acid sequence
included 1n the GAN traiming feedback 438. In scenarios
where a respective amino acid sequence produced by at least
one of the first modified GAN architecture 412, the second
modified GAN architecture 414, or up to the Nth modified
(GAN architecture 416, has at least at threshold amount of
identity with the amino acid sequence included 1n the GAN
training feedback, the respective amino acid sequence can be
excluded from at least one of the first traiming sequences
424, the second training sequences 426, or up to the Nth
training sequences 428. In this way, the ethiciency and
accuracy of the inferential modeling architecture 402 can be
increased due to the training of the inferential modeling
architecture 402 being based on amino acid sequences that
are more readily classified by the inferential modeling
architecture 402.

FIG. 5 15 a diagram 1illustrating an example framework to
determine amino acid sequences having a range of values for
a feature of a protein that are used to train an inferential
model, 1 accordance with some implementations. The
framework 500 can include a first generative machine learn-
ing architecture 502 and a second generative machine learn-
ing architecture 504. The first generative machine learning
architecture 502 and the second generative machine learning
architecture 504 can individually include one or more gen-
crative adversarial networks. In one or more additional
examples, the first generative machine learning architecture
502 and the second generative machine learning architecture
504 can individually include one or more autoencoders.

The first generative machine learning architecture 502 can
generate {irst amino acid sequences of proteins having a first
distribution 506 that corresponds to a first range of values for
a feature of the proteins. The second generative machine
learning architecture 504 can generate amino acid sequences
of proteins having a second distribution 508 that corre-
sponds to a second range of values for the feature of the
proteins. The feature of the proteins can include a biophysi-
cal property or a structural feature. In one or more examples,
the first generative machine learning architecture 502 and
the second generative machine learning architecture 504 can
undergo at least a portion of one or more training processes
to produce the first amino acid sequences that correspond to
the first distribution 506 and the second amino acid
sequences that correspond to the second distribution 508. In
the 1llustrative example of FIG. 5, a combined distribution
510 of the first distribution 506 and the second distribution
508 can include an overlap region 512. The overlap region
512 can indicate values for the feature where amino acid
sequences produced by the first generative machine learning
architecture 502 and amino acid sequences produced by the
second generative machine learning architecture 504 have
the same or similar values.

In one or more 1mplementations, a first modified distri-
bution 514 can be determined that includes a portion of the
first distribution 3506 that does not include amino acid
sequences havmg values for the feature that are included 1n
the overlap region 512. In addition, a second modified
distribution 516 can be determined that includes a portion of
the second distribution that does not include amino acid
sequences having values for the feature that are included 1n
the overlap region 512. The amino acid sequences that
correspond to the first modified distribution 514 and the
amino acid sequences that correspond to the second modi-
fied distribution 516 can be provided to an inferential
modeling architecture 518 to train the inferential modeling
architecture 518 to classity amino acid sequences of pro-
temns. In the illustrative example of FIG. 5, the inferential




US 12,080,380 B2

33

modeling architecture 518 can be trained to classity amino
acids according to a first classification 520 and a second
classification 522. The first classification 520 can corre-
spond to a feature of amino acid sequences related to the first
modified distribution 514 and the second classification 522
can correspond to an additional feature of amino acid
sequences related to the second modified distribution 516.
By traiming the inferential modeling architecture 518 using
the first modified distribution 514 and the second modified
distribution 516 without the amino acid sequences corre-
sponding to the overlap region 512, the inferential modeling
architecture 518 can more efliciently classily amino acid
sequences than 1n situations where the inferential modeling
architecture 518 1s trained using amino acid sequences that
do correspond to the overlap region 512. For example, 1n at
least some situations, the amino acid sequence that corre-
spond to the overlap region 512 may decrease the accuracy
of the predictions produced by the inferential modeling
architecture 518 with respect to the first classification 520
and the second classification 522.

FIGS. 6 and 7 illustrate example processes for generating,
amino acid sequences of proteins using machine learning
techniques. The example processes are 1llustrated as collec-
tions of blocks 1n logical flow graphs, which represent
sequences of operations that can be implemented 1n hard-
ware, software, or a combination thereof. The blocks are
referenced by numbers. In the context of software, the
blocks represent computer-executable instructions stored on
one or more computer-readable media that, when executed
by one or more processing units (such as hardware micro-
processors), perform the recited operations. Generally, com-
puter-executable instructions include routines, programs,
objects, components, data structures, and the like that per-
form particular functions or implement particular data types.
The order in which the operations are described 1s not
intended to be construed as a limitation, and any number of
the described blocks can be combined 1n any order and/or in
parallel to implement the process.

FIG. 6 1s a flow diagram 1llustrating an example process
600 to classily amino acid sequences using an inferential
model that 1s trained using amino acid sequences produced
by one or more generative adversarial networks, 1n accor-
dance with one or more implementations. The process 600
can include, at 602, generating, by a plurality of generators
of one or more generative adversarial networks, a {irst
number ol tramming sequences and a second number of
training sequences having different characteristics from the
first number of tramning sequences. The plurality of genera-
tors can include a first generator that produces the first
number of training sequences and a second generator that
produces the second number of training sequences. The first
number of training sequences can include a first group of
amino acid sequences of first proteins and the second
number of training sequences can include a second group of
amino acid sequences of second proteins. In one or more
examples, the first proteins and the second proteins can
include antibodies.

The characteristics of the first proteins and the character-
1stics of the second proteins can be different 1n that the first
proteins have one or more characteristics that are not asso-
ciated with the second proteins. The one or more character-
istics that are diflerent between the first proteins and the
second proteins can 1nclude one or more biophysical prop-
erties and/or one or more structural features. For example,
the first proteins can have one or more hydrophobic regions
and a hydrophobic region can be absent from the second
proteins. In one or more additional examples, the first
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proteins can comprise first antibodies having at least at a
threshold amount of binding athnity for a first antigen and
the second proteins can comprise second antibodies having
at least a threshold amount of binding athinity for a second
antigen that 1s different from the first antigen. Further, the
one or more characteristics that are diflerent between the
first proteins and the second proteins can correspond to
different sets of values for one or more biophysical proper-
ties and/or one or more structural features. To illustrate, the
first proteins can have melting temperatures with a first
range of values and the second proteins can have melting
temperatures with a second range of values that 1s diflerent
from the first range of values. In addition, the first proteins
can have negatively charged regions having a first range of
s1izes and the second proteins can have negatively charged
regions having a second range of sizes diflerent from the first
range of sizes.

At 604, the process 600 can include traiming an inferential
model using the first number of training sequences and the
second number of training sequences to produce a trained
version of the inferential model. In one or more examples,
the inferential model can be trained to identify characteris-
tics of proteins based on the amino acid sequences of
proteins. To illustrate, the inferential model can be trained to
identiy amino acid sequences of proteins having one or
more characteristics that correspond to the first number of
training sequences and to 1dentily amino acid sequences of
proteins having one or more characteristics that correspond
to the second number of training sequences.

In addition, the process 600 can include, at 606, classi-
tying, using the tramned version of the inferential model,
additional amino acid sequences according to a first classi-
fication that corresponds to one or more features of the first
number of training sequences and a second classification
that corresponds to one or more features of the second
number of training sequences. In one or more examples, the
trained version of the inferential model can obtain an input
sequence that includes an amino acid sequence of a protein.
The trained version of the inferential model can analyze the
amino acid sequence and determine a first probability of the
amino acid sequence corresponding to the first classification
and a second probability of the amino acid sequence corre-
sponding to the second classification. In situations where the
first probabaility satisfies a threshold probability, the trained
version ol the inferential model can determine that the
amino acid sequence corresponds to the first classification.
Additionally, 1 scenarios where the second probability
satisfies a threshold probability, the trained version of the
inferential model can determine that the amino acid
sequence corresponds to the second classification. In further
examples, the classification related to the higher of the first
probability or the second probability can be associated with
the amino acid sequence by the trained inferential modeling
system.

FIG. 7 1s a flow diagram 1llustrating an example process
700 to train an inferential model using amino acid sequences
of proteins produced by one or more generative adversarial
networks, 1n accordance with one or more implementations.
At 702, the process 700 can include obtaining a first trainming
dataset including a first number of amino acid sequences of
a first plurality of proteins having one or more features
included 1n a first group of features. In addition, at 704, the
process 700 can 1nclude performing a {irst training process
using the first training dataset to produce a generator of a
generative adversarial network that produces first amino
acid sequences having at least one feature of the first group
of features. For example, the first training dataset can be
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provided to a challenging component of the generative
adversarial network that 1s trained in conjunction with the
generator. In various examples, the challenging component
can evaluate the amino acid sequences produced by the
generator 1n relation to the amino acid sequences included 1n
the first training dataset.

After completing the training process to produce the
generator of the generative adversarial network, the process
700 can include, at 706, obtaining a second training dataset
including a second number of amino acid sequences of a
second plurality of proteins having features included in a
second group of features that 1s different from the first group
ol features. In one or more examples, the second training
dataset can include a greater number of amino acid
sequences of proteins having a subset of the features of a
portion of the proteins corresponding to the amino acid
sequences included 1n the first training dataset. For example,
the first training dataset can include a first number of amino
acid sequences of proteins having one or more negatively
charged regions and the second training dataset can include
a second number of amino acid sequences of proteins having
one or more negatively charged regions that 1s greater than
the first number of amino acid sequences. In one or more
illustrative examples, the second number of amino acid
sequences can be several times greater than the first number
of amino acid sequences. Continuing with this example, the
first traiming dataset can include a number of amino acid
sequences ol proteins that have one or more hydrophobic
regions and a number of amino acid sequences of proteins
that have one or more polar regions, while the second
training dataset includes fewer amino acid sequences of
proteins that include one or more polar regions and fewer
amino acid sequences of proteins that include one or more
hydrophobic regions than the first traiming dataset. In vari-
ous examples, amino acid sequences of proteins having one
or more polar regions and/or one or more hydrophobic
regions may be absent from the second training dataset.

The process 700 can also include, at 708, performing a
second traiming process using the second training dataset to
produce a modified version of the generator that produces
second amino acid sequences. The second training process
can be part of a transfer learning process that 1s performed
with respect to the generator to modify at least one of one or
more parameters, one or more weights, or one or more
functions executed by the generator to modify the structural
features and/or biophysical properties of proteins corre-
sponding to amino acid sequences produced by the genera-
tor. Additionally, at 710, the process 700 can include pro-
ducing, using the modified version of the generator, a third
training dataset that includes a third number of amino acid
sequences of a third plurality of proteins having features
included in the second group of features. In one or more
illustrative examples, the third training dataset can include
amino acid sequences of proteins having one or more
negatively charged regions. The third number of proteins
included 1n the third traming dataset can be greater than the
second number of proteins included in the second training
dataset. In this way, the third training dataset can be used to
train an inferential model that uses a greater amount of data
for traiming than the amount of data used to train the
generative adversarial network.

In one or more examples, amino acid sequences produced
by the modified version of the generator can be filtered to
generate the third training dataset. To illustrate, the amino
acid sequences produced by the modified version of the
generator can be analyzed with respect to one or more
criteria to determine whether respective amino acid
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sequences produced by the modified version of the generator
are to be included 1n the third training dataset. For example,
the amino acid sequences produced by the modified version
of the generator can be analyzed to 1dentily proteins having
one or more structural features and/or one or more biophysi-
cal properties that correspond to classifications that are to be
used by the inferential model. In one or more 1llustrative
examples, the amino acid sequences produced by the modi-
fied version of the generator can be analyzed to identily
proteins having one or more ranges of values of one or more
biophysical properties and/or one or more ranges of values
ol one or more structural features.

Additionally, the process 700 can include, at 712, per-
forming a third training process for an inferential model
using the third traiming dataset to produce a trained version
ol the inferential model. The trained version of the inferen-
t1al model can identily amino acid sequences of proteins
having one or more classifications. In various examples, at
least one of the classifications can correspond to one or more
of the second group of features that characterize proteins of
the third training dataset. For example, 1n situations where
the third training dataset includes amino acid sequences of
proteins including one or more polar regions having a range
of sizes, the trained version of the inferential model can
determine a probability of additional amino acid sequences
including one or more polar regions having the range of
s1izes. Additionally, the third training process can include
providing additional training datasets for the inferential
model where the additional training datasets include amino
acid sequences of proteins having different characteristics
from each other additional training dataset and from the
third training dataset. In one or more illustrative examples,
a number of tramning datasets used to train the inferential
model can 1include amino acid sequences of proteins having
different structural features. To illustrate, the inferential
model can be trained using a training dataset that includes
amino acid sequences ol proteins having one or more polar
regions and an additional traiming dataset that includes
amino acid sequences ol proteins having one or more
hydrophobic regions. Accordingly, the trained version of the
inferential model can determine probabilities that amino
acid sequences correspond to proteins having one or more
hydrophobic regions and probabilities that amino acid
sequences correspond to proteins having one or more polar
regions. In one or more additional illustrative examples, the
trained version of the imiferential model can determine prob-
abilities of amino acid sequences corresponding to proteins
having a number of ranges of values for one or more
structural features and/or values for one or more biophysical
properties. In one or more scenarios, the traimned version of
the mferential model can determine probabilities of amino
acid sequences of proteins having a first range of values for
solubility 1n water and probabilities of amino acid sequences
of proteins having a second range of values for solubility 1n
water. In these situations, the training of the inferential
model can be performed using a training dataset that
includes amino acid sequences of proteins having values of
solubility 1n water 1included in the first range of values and
an additional training dataset that includes amino acid
sequences of proteins having values of solubility in water
included in the second range of values.

Further, at 714, the process 700 can include obtaining a
fourth number of amino acid sequences of a fourth plurality
of proteins. The fourth number of amino acid sequences can
include input sequences that are to be classified by the
trained version of the inferential model. The process 700 can
also include, at 716, determining, using the trained version
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of the inferential model, that at least a portion of the fourth
plurality of proteins have one or more features of the second
group ol features. In one or more examples, the trained
version of the inferential model can determine a probability
that an amino acid sequence included 1n the fourth number
of amino acid sequences corresponds to a protein having a
teature included in the second group of features. In situa-
tions where the probability 1s above a threshold probability,
the trained version of the inferential model can determine a
classification for the amino acid sequence that corresponds
to the feature. The feature can include a structural feature, a
range ol values of a structural feature, a biophysical prop-
erty, a range of values of the biophysical property, or one or
more combinations thereof.

FIG. 8 illustrates a diagrammatic representation of a
machine 800 1n the form of a computer system within which
a set of instructions may be executed for causing the
machine 800 to perform any one or more of the method-
ologies discussed herein, according to an example, accord-
ing to an example implementation. Specifically, FIG. 8
shows a diagrammatic representation of the machine 800 1n
the example form of a computer system, within which
istructions 802 (e.g., software, a program, an application,
an applet, an app, or other executable code) for causing the
machine 800 to perform any one or more of the method-
ologies discussed herein may be executed. For example, the
instructions 802 may cause the machine 800 to implement
the frameworks 100, 200, 300, 400, 500 described with
respect to FIGS. 1, 2, 3, 4, and 5, respectively, and to execute
the processes 600, 700 described with respect to FIGS. 6 and
7, respectively.

The 1nstructions 802 transform the general, non-pro-
grammed machine 800 into a particular machine 800 pro-
grammed to carry out the described and illustrated functions
in the manner described. In alternative implementations, the
machine 800 operates as a standalone device or may be
coupled (e.g., networked) to other machines. In a networked
deployment, the machine 800 may operate in the capacity of
a server machine or a client machine 1 a server-client
network environment, or as a peer machine in a peer-to-peer
(or distributed) network environment. The machine 800 may
comprise, but not be limited to, a server computer, a client
computer, a personal computer (PC), a tablet computer, a
laptop computer, a netbook, a set-top box (STB), a personal
digital assistant (PDA), an entertainment media system, a
cellular telephone, a smart phone, a mobile device, a wear-
able device (e.g., a smart watch), a smart home device (e.g.,
a smart appliance), other smart devices, a web appliance, a
network router, a network switch, a network bridge, or any
machine capable of executing the instructions 802, sequen-
tially or otherwise, that specily actions to be taken by the
machine 800. Further, while only a single machine 800 1s
illustrated, the term “machine” shall also be taken to include
a collection of machines 800 that individually or jointly
execute the instructions 802 to perform any one or more of
the methodologies discussed herein.

Examples of machine 800 can include logic, one or more
components, circuits (e.g., modules), or mechanisms. Cir-
cuits are tangible entities configured to perform certain
operations. In an example, circuits can be arranged (e.g.,
internally or with respect to external entities such as other
circuits) 1n a specilied manner. In an example, one or more
computer systems (e.g., a standalone, client or server com-
puter system) or one or more hardware processors (proces-
sors) can be configured by software (e.g., instructions, an
application portion, or an application) as a circuit that
operates to perform certain operations as described herein.
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In an example, the software can reside (1) on a non-
transitory machine readable medium or (2) in a transmission
signal. In an example, the software, when executed by the
underlying hardware of the circuit, causes the circuit to
perform the certain operations.

In an example, a circuit can be implemented mechanically
or electronically. For example, a circuit can comprise dedi-
cated circuitry or logic that i1s specifically configured to
perform one or more techniques such as discussed above,
such as including a special-purpose processor, a field pro-
grammable gate array (FPGA) or an application-specific
integrated circuit (ASIC). In an example, a circuit can
comprise programmable logic (e.g., circuitry, as encom-
passed within a general-purpose processor or other program-
mable processor) that can be temporarily configured (e.g.,
by software) to perform the certain operations. It will be
appreciated that the decision to mmplement a circuit
mechanically (e.g., 1n dedicated and permanently configured
circuitry), or in temporarily configured circuitry (e.g., con-
figured by soitware) can be driven by cost and time con-
siderations.

Accordingly, the term “circuit” 1s understood to encom-
pass a tangible entity, be that an entity that i1s physically
constructed, permanently configured (e.g., hardwired), or
temporarily (e.g., ftransitorily) configured (e.g., pro-
grammed) to operate 1n a specified manner or to perform
specified operations. In an example, given a plurality of
temporarily configured circuits, each of the circuits need not
be configured or instantiated at any one 1nstance 1n time. For
example, where the circuits comprise a general-purpose
processor configured via software, the general-purpose pro-
cessor can be configured as respective different circuits at
different times. Soitware can accordingly configure a pro-
cessor, for example, to constitute a particular circuit at one
instance ol time and to constitute a different circuit at a
different instance of time.

In an example, circuits can provide information to, and
receive information from, other circuits. In this example, the
circuits can be regarded as being communicatively coupled
to one or more other circuits. Where multiple of such circuits
exist contemporaneously, communications can be achieved
through signal transmission (e.g., over appropriate circuits
and buses) that connect the circuits. In 1mplementations 1n
which multiple circuits are configured or instantiated at
different times, communications between such circuits can
be achieved, for example, through the storage and retrieval
of information 1n memory structures to which the multiple
circuits have access. For example, one circuit can perform
an operation and store the output of that operation in a
memory device to which 1t 1s commumicatively coupled. A
further circuit can then, at a later time, access the memory
device to retrieve and process the stored output. In an
example, circuits can be configured to initiate or receive
communications with mput or output devices and can oper-
ate on a resource (e.g., a collection of information).

The various operations of method examples described
herein can be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by soft-
ware) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors can constitute processor-implemented cir-
cuits that operate to perform one or more operations or
functions. In an example, the circuits referred to herein can
comprise processor-implemented circuits.

Similarly, the methods described herein can be at least
partially processor implemented. For example, at least some
of the operations of a method can be performed by one or
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processors or processor-implemented circuits. The perfor-
mance of certain of the operations can be distributed among
the one or more processors, not only residing within a single
machine, but deployed across a number of machines. In an
example, the processor or processors can be located in a
single location (e.g., within a home environment, an office
environment or as a server farm), while 1n other examples
the processors can be distributed across a number of loca-
tions.

The one or more processors can also operate to support
performance of the relevant operations 1n a “cloud comput-
ing” environment or as a “software as a service”

(SaaS). For example, at least some of the operations can
be performed by a group ol computers (as examples of
machines 1including processors), with these operations being
accessible via a network (e.g., the Internet) and via one or
more appropriate interfaces (e.g., Application Program
Interfaces (APIs).)

Example implementations (e.g., apparatus, systems, or
methods) can be implemented 1n digital electronic circuitry,
in computer hardware, in firmware, 1n soltware, or in any
combination thereof. Example implementations can be
implemented using a computer program product (e.g., a
computer program, tangibly embodied in an information
carrier or 1n a machine readable medium, for execution by,
or to control the operation of, data processing apparatus such
as a programmable processor, a computer, or multiple com-
puters).

A computer program can be written 1 any form of
programming language, including compiled or interpreted
languages, and it can be deployed 1n any form, including as
a stand-alone program or as a software module, subroutine,
or other unit switable for use 1n a computing environment. A
computer program can be deployed to be executed on one
computer or on multiple computers at one site or distributed
across multiple sites and interconnected by a communication
network.

In an example, operations can be performed by one or
more programmable processors executing a computer pro-
gram to perform functions by operating on input data and
generating output. Examples of method operations can also
be performed by, and example apparatus can be imple-
mented as, special purpose logic circuitry (e.g., a field
programmable gate array (FPGA) or an application-specific
integrated circuit (ASIC)).

The computing system can include clients and servers. A
client and server are generally remote from each other and
generally interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In implementations
deploying a programmable computing system, 1t will be
appreciated that both hardware and software architectures
require consideration. Specifically, 1t will be appreciated that
the choice of whether to implement certain functionality in
permanently configured hardware (e.g., an ASIC), 1n tem-
porarily configured hardware (e.g., a combination of soft-
ware and a programmable processor), or a combination of
permanently and temporarily configured hardware can be a
design choice. Below are set out hardware (e.g., machine
800) and software architectures that can be deployed in
example implementations.

In an example, the machine 800 can operate as a stand-
alone device or the machine 800 can be connected (e.g.,
networked) to other machines.

In a networked deployment, the machine 800 can operate
in the capacity of erther a server or a client machine 1n
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server-client network environments. In an example, machine
800 can act as a peer machine in peer-to-peer (or other
distributed) network environments. The machine 800 can be
a personal computer (PC), a tablet PC, a set-top box (STB),
a Personal Digital Assistant (PDA), a mobile telephone, a
web appliance, a network router, switch or bridge, or any
machine capable of executing instructions (sequential or
otherwise) specilying actions to be taken (e.g., performed)
by the machine 800. Further, while only a single machine
800 1s 1llustrated, the term “computing device” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of istructions to
perform any one or more of the methodologies discussed
herein.

Example machine 800 can include a processor 804 (e.g.,
a central processing unit CPU), a graphics processing unit
(GPU) or both), a main memory 806 and a static memory
808, some or all of which can communicate with each other
via a bus 810. The machine 800 can further include a display
unit 812, an alphanumeric mput device 814 (e.g., a key-
board), and a user interface (Ul) navigation device 816 (e.g.,
a mouse). In an example, the display unit 812, input device
814 and LI navigation device 816 can be a touch screen
display. The machine 800 can additionally include a storage
device (e.g., drive unit) 818, a signal generation device 820
(e.g., a speaker), a network 1nterface device 822, and one or
more sensors 824, such as a global positioning system (GPS)
sensor, compass, accelerometer, or another sensor.

The storage device 818 can include a machine readable
medium 826 on which 1s stored one or more sets of data
structures or mstructions 802 (e.g., software) embodying or
utilized by any one or more of the methodologies or func-
tions described herein. The 1nstructions 802 can also reside,
completely or at least partially, within the main memory 806,
within static memory 808, or within the processor 804
during execution thereof by the machine 800. In an example,
one or any combination of the processor 804, the main
memory 806, the static memory 808, or the storage device
818 can constitute machine readable media.

While the machine readable medium 826 1s illustrated as
a single medium, the term “machine readable medium™ can
include a single medium or multiple media (e.g., a central-
1zed or distributed database, and/or associated caches and
servers) that configured to store the one or more 1nstructions
802. The term “machine readable medium™ can also be taken
to 1mnclude any tangible medium that 1s capable of storing,
encoding, or carrying instructions for execution by the
machine and that cause the machine to perform any one or
more of the methodologies of the present disclosure or that
1s capable of storing, encoding or carrying data structures
utilized by or associated with such instructions. The term
“machine readable medium™ can accordingly be taken to
include, but not be limited to, solid-state memories, and
optical and magnetic media. Specific examples of machine-
readable media can include non-volatile memory, including,
by way of example, semiconductor memory devices (e.g.,
Electrically Programmable Read-Only Memory
(EPROM), Electrically Erasable Programmable Read-
Only Memory (EEPROM)) and flash memory devices;
magnetic disks such as internal hard disks and removable
disks; magneto-optical disks; and CD-ROM and DVD-
ROM disks.

The structions 802 can further be transmitted or
received over a communications network 828 using a trans-
mission medium via the network interface device 822 uti-
lizing any one of a number of transfer protocols (e.g., frame
relay, IP, TCP, UDP, HT'TP, etc.). Example communication
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networks can mclude a local area network (LAN), a wide
area network (WAN), a packet data network (e.g., the
Internet), mobile telephone networks (e.g., cellular net-
works), Plain Old Telephone (POTS) networks, and wireless
data networks (e.g., IEEE 802.11 standards family known as >
Wi-Fi®, IEEE 802.16 standards family known as WiMax®),
peer-to-peer (P2P) networks, among others. The term “trans-
mission medium™ shall be taken to include any intangible
medium that 1s capable of storing, encoding or carrying
instructions for execution by the machine, and includes
digital or analog communications signals or other intangible
medium to facilitate communication of such software.

10

EXAMPLE IMPLEMENTATIONS

15

Implementation 1. A method comprising: obtaining, by a
computing system including one or more computing devices
having one or more processors and memory, a {irst traiming,
dataset including a first number of amino acid sequences of
a first plurality of proteins, individual first proteins of the
first plurality of proteins having one or more first features of
a first group of features; performing, by the computing
system, a {irst training process using the first training dataset
to produce a generator of a generative adversarial network
that produces first additional amino acid sequences of first
additional proteins having at least one first feature of the first
group ol features; obtaining, by the computing system, a
second training dataset including a second number of amino
acid sequences of a second plurality of proteins, individual
second proteins of the second plurality of proteins having
one or more second features of a second group of features,
the second group of features being different from the first
group of features; performing by the computing system, a
second traiming process using the second training dataset to
produce a modified version of the generator that produces
second additional amino acid sequences of second additional
proteins having at least one second feature of the one or
more second features; producing, by the computing system
and using the modified version of the generator, a third
number of amino acid sequences of a third plurality of
proteins, individual third proteins of the third plurality of
proteins having at least a portion of the one or more second
teatures, and the third number of amino acid sequences
being greater than the second number of amino acid
sequences; performing, by the computing system, a third
training process for an inferential model using at least a
portion of the third number of amino acid sequences at a
third training dataset to produce a trained version of the
inferential model, the trained version of the inferential
model to 1dentity amino acid sequences having features that
correspond to at least a portion of the second group of
features; obtaining, by the computing system, a fourth
number of amino acid sequences of a fourth plurality of
proteins; and determining, by the computing system and 55
using the trained version of the inferential model, that at
least a portion of the fourth plurality of proteins have one or
more second features of the second group of features.

Implementation 2. The method of implementation 1,
wherein the second group of features includes a first feature 60
of the first group of features and an additional first feature of
the first group of features 1s absent from the second group of
features.

Implementation 3. The method of implementation 1 or 2,
wherein the second plurality of proteins have a first distri- 65
bution of values for a second feature of the second group of
teatures and the second additional proteins have a second
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distribution of values for the second feature that corresponds
to the first distribution of values.

Implementation 4. The method of any one of implemen-
tations 1 to 3, wherein the second training dataset includes
a greater number of amino acid sequences corresponding to
proteins having a second feature of the second group of
features than a number of amino sequences included 1n the
first training dataset.

Implementation 5. The method of any one of implemen-
tations 1 to 4, further comprising: determining, by the
computing system and using the inferential model, a first
probability that a fourth amino acid sequence of the fourth
number of amino acid sequences corresponds to a protein
having a first classification; and determining, by the com-
puting system and using the inferential model, a second
probability that the fourth amino acid sequence corresponds
to a protein having a second classification.

Implementation 6. The method of implementation 3,
further comprising: determining, by the computing system,
that the first probabaility satisfies a threshold probabaility; and
determining, by the computing system, that the fourth amino
acid sequence 1s classified according to the first classifica-
tion.

Implementation 7. The method of implementation 5 or 6,
wherein the first classification corresponds to proteins hav-
ing at least one of a first structural feature or a first
biophysical property and the second classification corre-
sponds to proteins having at least one of a second structural
feature or a second biophysical property.

Implementation 8. The method of implementation 5 or 6,
wherein the first classification corresponds to a first range of
values of a structural property or a first range of values of a
biophysical property and the second classification corre-
sponds to a second range of values of the structural property
or a second range of values of the biophysical property.

Implementation 9. The method of any one of implemen-
tations 1 to 8, further comprising: analyzing, by the com-
puting system, an amino acid sequence included 1n the third
number of amino acid sequences to determine a probability
that a third protein corresponding to the amino acid
sequences has a value of a structural feature included 1n the
second group of features that 1s within a specified range of
values; determining, by the computing system, that the
probability corresponds to a threshold probability; and deter-
mining, by the computing system, that the amino acid
sequence 1s to be 1mcluded in the third training dataset.

Implementation 10. A computing system comprising: one
or more hardware processors; and one or more non-transi-
tory computer readable media storing computer-executable
instructions that, when executed by the one or more hard-
ware processors, cause the one or more processor to perform
operations comprising: obtaining a first traimng dataset
including a first number of amino acid sequences of a first
plurality of proteins, individual first proteins of the first
plurality of proteins having one or more first features of a
first group of features; performing a {irst training process
using the first training dataset to produce a generator of a
generative adversarial network that produces first additional
amino acid sequences of first additional proteins having at
least one first feature of the first group of features; obtaining
a second tramning dataset including a second number of
amino acid sequences ol a second plurality of proteins,
individual second proteins of the second plurality of proteins
having one or more second features of a second group of
teatures, the second group of features being different from
the first group of features; performing a second traiming
process using the second training dataset to produce a
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modified version of the generator that produces second
additional amino acid sequences of second additional pro-
teins having at least one second feature of the one or more
second features; producing using the modified version of the
generator, a third number of amino acid sequences of a third
plurality of proteins, individual third proteins of the third
plurality of proteins having at least a portion of the one or
more second features, and the third number of amino acid
sequences being greater than the second number of amino
acid sequences; performing a third training process for an
inferential model using at least a portion of the third number
of amino acid sequences at a third training dataset to produce
a trained version of the inferential model, the trained version
of the inferential model to identily amino acid sequences
having features that correspond to at least a portion of the
second group of features; obtaining a fourth number of
amino acid sequences of a fourth plurality of proteins; and
determining, using the traimned version of the inferential
model, that at least a portion of the fourth plurality of
proteins have one or more second features of the second
group ol features.

Implementation 11. The computing system of implemen-
tation 10, wherein the second group of features includes a
first feature of the first group of features and an additional
first feature of the first group of features 1s absent from the
second group of features.

Implementation 12. The computing system of implemen-
tation 10 or 11, wherein the second plurality of proteins have
a first distribution of values for a second feature of the
second group of features and the second additional proteins
have a second distribution of values for the second feature
that corresponds to the first distribution of values.

Implementation 13. The computing system of any one of
implementations 10 to 12, wherein the second training
dataset includes a greater number of amino acid sequences
corresponding to proteins having a second feature of the
second group of features than a number of amino sequences
included in the first traiming dataset.

Implementation 14. The computing system of any one of
implementations 10 to 13, wherein the one or more non-
transitory computer readable media store additional com-
puter-executable instructions that, when executed by the one
or more hardware processors, cause the one or more pro-
cessor to perform additional operations comprising: deter-
mimng, using the inferential model, a first probability that a
fourth amino acid sequence of the fourth number of amino
acid sequences corresponds to a protein having a {first
classification; and determining, using the inferential model,
a second probability that the fourth amino acid sequence
corresponds to a protein having a second classification.

Implementation 135. The computing system of implemen-
tation 14, wherein the one or more non-transitory computer
readable media store additional computer-executable
instructions that, when executed by the one or more hard-
ware processors, cause the one or more processor to perform
additional operations comprising: determining that the first
probability satisfies a threshold probability; and determining
that the fourth amino acid sequence 1s classified according to
the first classification.

Implementation 16. The computing system of implemen-
tation 14 or 15, wherein the first classification corresponds
to proteins having at least one of a first structural feature or
a first biophysical property and the second classification
corresponds to proteins having at least one of a second
structural feature or a second biophysical property.

Implementation 17. The computing system of implemen-
tation 14 or 15, wherein the first classification corresponds
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to a first range of values of a structural property or a first
range of values of a biophysical property and the second
classification corresponds to a second range of values of the
structural property or a second range of values of the
biophysical property.

Implementation 18. The computing system of any one of
implementations 10 to 17, wherein the one or more non-
transitory computer readable media store additional com-
puter-executable mstructions that, when executed by the one
or more hardware processors, cause the one or more pro-
cessor to perform additional operations comprising: analyz-
ing an amino acid sequence included in the third number of
amino acid sequences to determine a probability that a third
protein corresponding to the amino acid sequences has a
value of a structural feature included 1n the second group of
features that 1s within a specified range of values; determin-
ing that the probability corresponds to a threshold probabil-
ity; and determining that the amino acid sequence is to be
included 1n the third training dataset.

Implementation 19. A computing system comprising: one
or more hardware processors; and one or more non-transi-
tory computer readable media storing computer-executable
instructions that, when executed by the one or more hard-
ware processors, cause the one or more processor to perform
operations comprising: generating, by a plurality of genera-
tors of one or more generative adversarial networks, a first
number of amino acid sequences, a first portion of the first
number of amino acid sequences corresponding to a first
group ol antibodies having first values for a feature of
antibodies and a second portion of the first number of amino
acid sequences corresponding to a second group of antibod-
ies having second values for the feature that are different
from the first values; training an inferential model using the
first number of amino acid sequences to produce a trained
version of the inferential model; and classifying, using the
trained version of the inferential model, individual amino
acid sequences of a second number of amino acid sequences
as being included in the first group of antibodies or the
second group of antibodies.

Implementation 20. The computing system of implemen-
tation 19, wherein the first portion of the first number of
amino acid sequences corresponds to a first training dataset
for the inferential model and the second portion of the first
number of amino acid sequences corresponds to a second
training dataset for the inferential model.

Implementation 21. The computing system of implemen-
tation 20, wherein the one or more generative adversarial
networks includes a first generative adversarial network to
generate the first portion of the first number of amino acid
sequences 1ncluded 1n the first training dataset and a second
generative adversarial network to generate the second por-
tion of the first number of amino acid sequences included in
the second training dataset.

Implementation 22. The computing system of implemen-
tation 21, wherein the one or more non-transitory computer
readable media store additional computer-executable
instructions that, when executed by the one or more hard-
ware processors, cause the one or more processor to perform
additional operations comprising: training a first generating
component of the first generative adversarial network using
a first additional training dataset, the first additional training
dataset including first amino acid sequences of antibodies
that have at least a portion of the first values for the feature;
and training a second generating component of the second
generative adversarial network using a second additional
training dataset, the second additional training dataset
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including second amino acid sequences of antibodies that
have at least a portion of the second values for the feature.

Implementation 23. The computing system of implemen-
tation 19, wherein: the first number of amino acid sequences
includes a first distribution indicating one or more amino
acid sequences having respective values for the feature that
are 1cluded in the first values and a second distribution
indicating one or more additional amino acid sequences
having respective additional values for the feature that are
included 1n the second values; and the first distribution and
the second distribution have an overlap region that at least
one amino acid sequence included in the first distribution
that has a same value for the feature as at least one amino
acid sequence included 1n the second distribution.

Implementation 24. The computing system of implemen-
tation 23, wherein the one or more non-transitory computer
readable media store additional computer-executable
instructions that, when executed by the one or more hard-
ware processors, cause the one or more processor to perform
additional operations comprising: determining a first train-
ing dataset for the inferential model that includes a portion
of the first distribution that does not include amino acid
sequences of the first portion of the first number of amino
acids included in the overlap region; and determiming a
second traimng dataset for the inferential model that
includes a portion of the second distribution that does not
include amino acids of the second portion of the first number
of amino acids included 1n the overlap region.

Implementation 25. The computing system of any one of
implementations 19 to 24, wherein the one or more non-
transitory computer readable media store additional com-
puter-executable mstructions that, when executed by the one
or more hardware processors, cause the one or more pro-
cessor to perform additional operations comprising: gener-
ating, by the inferential model, classification data for the
second number of amino acid sequences, the classification
data indicating a first group of the second number of amino
acid sequences corresponding to a first classification and a
second group of the second number of amino acid sequences
corresponding to a second classification, the first classifica-
tion corresponding to the first values for the feature and the
second classification corresponding to the second values for
the feature; providing the classification data to a regression
model; and determining, using the regression model and
based on the classification data, a probability of at least a
portion of the second number of amino acid sequences
having a biophysical property.

Implementation 26. The computing system of any one of
implementations 19 to 25, wherein the one or more non-
transitory computer readable media store additional com-
puter-executable mstructions that, when executed by the one
or more hardware processors, cause the one or more pro-
cessor to perform additional operations comprising: gener-
ating, using a light chain generating component of a gen-
erative adversarial network of the one or more generative
adversarial networks, a first amino acid sequence that cor-
responds to a light chain of an antibody; generating, using a
heavy chain generating component of the generative adver-
sarial network, a second amino acid sequence that corre-
sponds to a heavy chain of the antibody; and combining the
first amino acid sequence and the second amino acid
sequence to produce a third amino acid sequence that 1s
included in the first number of amino acid sequences.

Implementation 27. The computing system of any one of
implementations 19 to 26, wherein the feature includes a
number of amino acids included 1n a hydrophobic region of
an antibody, a number of amino acids included 1n a posi-
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tively charged region of an antibody, a number of amino
acids 1included 1n a negatively charged region of an antibody,
a number of amino acids included 1n a polar region of an
antibody, a number of amino acids included 1n an uncharged
region of an antibody, a level of expression of an antibody,
a melting temperature of an antibody, a measure of solubility
of an antibody in water, a measure of acidity of an antibody,
a measure of viscosity of an antibody, a measure of 1immu-
nogenicity of an antibody, or a level of self-aggregation of
an antibody.

Implementation 28. A method comprising: generating, by
a plurality of generators of one or more generative adver-
sarial networks, a first number of amino acid sequences, a
first portion of the first number of amino acid sequences
corresponding to a first group of antibodies having first
values for a feature of antibodies and a second portion of the
first number of amino acid sequences corresponding to a
second group of antibodies having second values for the
teature that are different from the first values; traiming an
inferential model using the first number of amino acid
sequences to produce a trained version of the inferential
model; and classifying, using the trained version of the
inferential model, imndividual amino acid sequences of a
second number of amino acid sequences as being included
in the first group of antibodies or the second group of
antibodies.

Implementation 29. The method of implementation 28,
wherein the first portion of the first number of amino acid
sequences corresponds to a {first tramning dataset for the
inferential model and the second portion of the first number
of amino acid sequences corresponds to a second training
dataset for the inferential model.

Implementation 30. The method of implementation 29,
wherein the one or more generative adversarial networks
includes a first generative adversarial network to generate
the first portion of the first number of amino acid sequences
included in the first traiming dataset and a second generative
adversarial network to generate the second portion of the
first number of amino acid sequences included in the second
training dataset.

Implementation 31. The method of implementation 30,
comprising: training a first generating component of the first
generative adversarial network using a first additional train-
ing dataset, the first additional training dataset including first
amino acid sequences of antibodies that have at least a
portion of the first values for the feature; and training a
second generating component of the second generative
adversarial network using a second additional training data-
set, the second additional tramning dataset including second
amino acid sequences of antibodies that have at least a
portion of the second values for the feature.

Implementation 32. The method of implementation 28,
wherein: the first number of amino acid sequences includes
a first distribution indicating one or more amino acid
sequences having respective values for the feature that are
included 1n the first values and a second distribution 1ndi-
cating one or more additional amino acid sequences having
respective additional values for the feature that are included
in the second values; and the first distribution and the second
distribution have an overlap region that at least one amino
acid sequence included in the first distribution that has a
same value for the feature as at least one amino acid
sequence included 1n the second distribution.

Implementation 33. The method of implementation 32,
comprising: determining a first training dataset for the
inferential model that includes a portion of the first distri-
bution that does not include amino acid sequences of the first
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portion of the first number of amino acids included in the
overlap region; and determining a second training dataset for
the mferential model that includes a portion of the second
distribution that does not include amino acids of the second
portion of the first number of amino acids included 1n the
overlap region.

Implementation 34. The method of any one of implemen-
tations 28 to 33, comprising: generating, by the inferential
model, classification data for the second number of amino
acid sequences, the classification data indicating a {first
group ol the second number of amino acid sequences
corresponding to a first classification and a second group of
the second number of amino acid sequences corresponding,
to a second classification, the first classification correspond-
ing to the first values for the feature and the second classi-
fication corresponding to the second values for the feature;
providing the classification data to a regression model; and
determining, using the regression model and based on the
classification data, a probability of at least a portion of the
second number of amino acid sequences having a biophysi-
cal property.

Implementation 35. The method of any one of implemen-
tations 28 to 34, comprising: generating, using a light chain
generating component of a generative adversarial network of
the one or more generative adversarial networks, a first
amino acid sequence that corresponds to a light chain of an
antibody; generating, using a heavy chain generating com-
ponent of the generative adversarial network, a second
amino acid sequence that corresponds to a heavy chain of the
antibody; and combining the first amino acid sequence and
the second amino acid sequence to produce a third amino
acid sequence that 1s included 1n the first number of amino
acid sequences.

Implementation 36. The method of any one of implemen-
tations 28 to 35, wherein the feature includes a number of
amino acids included 1n a hydrophobic region of an anti-
body, a number of amino acids included 1n a positively
charged region of an antibody, a number of amino acids
included i a negatively charged region of an antibody, a
number of amino acids included in a polar region of an
antibody, a number of amino acids included 1n an uncharged
region ol an antibody, a level of expression of an antibody,
a melting temperature of an antibody, a measure of solubility
of an antibody 1n water, a measure of acidity of an antibody,
a measure of viscosity ol an antibody, a measure of 1mmu-
nogenicity of an antibody, or a level of self-aggregation of
an antibody.

What 1s claimed 1s:
1. A method comprising:
obtaining, by a computing system including one or more
computing devices having one or more processors and
memory, a first traimng dataset including first amino
acid sequences of first proteins, individual first proteins
have one or more first features of a first group of
features:
performing, by the computing system, a {first training
process that includes:
encoding individual first amino acid sequences as a
matrix according to amino acids located at positions
of individual first proteins to produce a plurality of
matrices corresponding to encoded versions of the
first amino acid sequences;
generating input data using a random number generator
or pseudo-random number generator, wherein the
input data 1s provided to a generating component of
a generative adversarial network;
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producing, by the generating component and based on
the mput data, generated sequences that correspond
to additional amino acid sequences, wherein the
generated sequences are represented as vectors indi-
cating amino acids located at a number of positions;

computationally analyzing, by a challenging compo-
nent of the generative adversarial network and
implementing a distance function, the vectors corre-
sponding to the generated sequences and the plural-
ity of matrices corresponding to the encoded ver-
sions of the first amino acid sequences to produce
challenging component output indicating differences
between the generated sequences and the first amino
acid sequences; and

modifying, based on the challenging component out-
put, at least one of one or more parameters, one or
more weights, or one or more variables of one or
more machine learning models of the generating
component until a loss function of the generating
component 1s minimized to produce a trained version
of the generating component;

obtaining, by the computing system, a second training

dataset including second amino acid sequences of sec-
ond proteins, individual second proteins having one or
more second features of a second group of features, the
second group of features being different from the first
group ol features;

performing by the computing system, transier learning

with respect to the trained version of the generating
component based on the second training dataset,
wherein the transfer learning includes modifying at
least one of the one or more parameters, the one or
more weights, or the one or more variables of the one
or more machine learning models of the generating
component 1n response to minimizing the loss function
of tramned version of the generating component with
respect to the second training dataset to produce a
modified version of the generating component, wherein
the modified version of the generating component
produces second additional amino acid sequences of
second additional proteins having at least one second
feature of the one or more second features;

producing, by the modified version of the generating

component as implemented by the computing system,
third amino acid sequences of third proteins, individual
third proteins having at least a portion of the one or
more second features, and the third amino acid
sequences being greater in number than the second
amino acid sequences;

performing, by the computing system, an additional train-

ing process for an inferential model using a third
training dataset that includes at least a portion of the
third amino acid sequences to produce a trained version
of the inferential model, the trained version of the
inferential model to classify amino acid sequences as
having features that correspond to at least a portion of
the second group of features;

obtaining, by the computing system, fourth amino acid

sequences ol fourth proteins; and

determining, by the tramned version of the inferential

model as implemented by the computing system, one or
more classifications for the fourth proteins, the one or
more classifications indicating at least one or more
structural features of the fourth proteins.

2. The method of claim 1, wherein the second group of
teatures includes a first feature of the first group of features
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and an additional first feature of the first group of features 1s
absent from the second group of features.

3. The method of claim 1, wherein the second proteins
have a first distribution of values for a second feature of the
second group of features and the second additional proteins
have a second distribution of values for the second feature.

4. The method of claim 1, wherein the second traiming
dataset includes a greater number of amino acid sequences
corresponding to proteins having a second feature of the
second group of features than a number of amino sequences
included in the first traiming dataset.

5. The method of claim 1, further comprising;:

determining, by the inferential model as implemented by

the computing system, a first probability that a fourth
amino acid sequence of the fourth of amino acid
sequences corresponds to a protein having a {irst clas-
sification; and

determining, by the inferential model as implemented by

computing system, a second probability that the fourth

amino acid sequence corresponds to a protein having a
second classification.
6. The method of claim 3, further comprising:
determining, by the computing system, that the first
probability satisfies a threshold probability; and

determining, by the computing system, that the fourth
amino acid sequence 1s classified according to the first
classification.
7. The method of claim 5, wherein the first classification
corresponds to proteins having at least one of a {first struc-
tural feature or a first biophysical property and the second
classification corresponds to proteins having at least one of
a second structural feature or a second biophysical property.
8. The method of claim 5, wherein the first classification
corresponds to a first range of values of a structural property
or a first range of values of a biophysical property and the
second classification corresponds to a second range of
values of the structural property or a second range of values
of the biophysical property.
9. The method of claim 1, further comprising;:
analyzing, by the computing system, a third amino acid
sequence 1included 1n the third amino acid sequences to
determine a probability that a third protein correspond-
ing to the third amino acid sequence has a value of a
structural feature included in the second group of
features that 1s within a specified range of values;

determining, by the computing system, that the probabil-
ity corresponds to a threshold probability; and

determining, by the computing system, that the third
amino acid sequence 1s to be included in the third
training dataset.
10. A system comprising:
one or more hardware processors; and
one or more non-transitory computer readable media
storing computer-executable instructions that, when
executed by the one or more hardware processors,
cause the one or more hardware processors to perform
operations comprising:
obtaining a first training dataset including first amino acid
sequences of first proteins, individual first proteins
having one or more first features of a first group of
features:
performing a {irst training process that includes:
encoding individual first amino acid sequences as a
matrix according to amino acids located at positions
of individual first proteins to produce a plurality of
matrices corresponding to encoded versions of the
first amino acid sequences;

10

15

20

25

30

35

40

45

50

55

60

65

50

generating input data using a random number generator
or pseudo-random number generator, wherein the
input data 1s provided to a generating component of
a generative adversarial network;
producing, by the generating component and based on
the mput data, generated sequences that correspond
to additional amino acid sequences, wherein the
generated sequences are represented as vectors indi-
cating amino acids located at a number of positions;
computationally analyzing, by a challenging compo-
nent of the generative adversarial network and
implementing a distance function, the vectors corre-
sponding to the generated sequences and the plural-
ity of matrices corresponding to the encoded ver-
sions of the first amino acid sequences to produce
challenging component output indicating differences
between the generated sequences and the first amino
acid sequences; and
modifying, based on the challenging component out-
put, at least one of one or more parameters, one or
more weights, or one or more variables of one or
more machine learning models of the generating
component until a loss function of the generating
component 1s minimized to produce a trained version
of the generating component;
obtaining a second traiming dataset including second
amino acid sequences of second proteins, individual
second proteins having one or more second features of
a second group of features, the second group of features
being different from the first group of features;
performing transier learning with respect to the trained
version of the generating component based on the
second tramning dataset, wherein the transfer learning
includes moditying at least one of the one or more
parameters, the one or more weights, or the one or more
variables of the one or more machine learning models
of the generating component in response to minimizing
the loss function of trained version of the generating
component with respect to the second training dataset
to produce a modified version of the generating com-
ponent, wherein the generating component produces
second additional amino acid sequences of second
additional proteins having at least one second feature of
the one or more second features:
producing, using the modified version of the generating
component, third amino acid sequences of third pro-
teins, individual third proteins having at least a portion
of the one or more second features, and the third amino
acid sequences being greater 1n number than the second
amino acid sequences;
performing an additional traiming process for an inferen-
t1al model using a third training dataset that includes at
least a portion of the third amino acid sequences to
produce a trained version of the inferential model, the
trained version of the inferential model to classity
amino acid sequences as having features that corre-
spond to at least a portion of the second group of
features:

obtaining fourth amino acid sequences of fourth proteins;
and

determining, by the tramned version of the inferential

model, one or more classifications for the fourth pro-

teins, the one or more classifications indicating at least

one or more structural features of the fourth proteins.

11. The system of claim 10, wherein the second group of

teatures includes a first feature of the first group of features
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and an additional first feature of the first group of features 1s
absent from the second group of features.

12. The system of claim 10, wherein the second proteins
have a first distribution of values for a second feature of the
second group of features and the second additional proteins
have a second distribution of values for the second feature.

13. The system of claim 10, wherein the second training
dataset includes a greater number of amino acid sequences
corresponding to proteins having a second feature of the
second group of features than a number of amino sequences
included in the first traiming dataset.

14. The system of claim 10, wherein the one or more
non-transitory computer readable media store additional
computer-executable instructions that, when executed by the
one or more hardware processors, cause the one or more
hardware processors to perform additional operations com-
prising:

determining, by the inferential model, a first probability

that a fourth amino acid sequence of the fourth amino
acid sequences corresponds to a protein having a first
classification; and

determining, by the inferential model, a second probabil-

ity that the fourth amino acid sequence corresponds to
a protein having a second classification.

15. The system of claim 14, wherein the one or more
non-transitory computer readable media store additional
computer-executable structions that, when executed by the
one or more hardware processors, cause the one or more
hardware processors to perform additional operations com-
prising:

determining that the first probability satisfies a threshold

probability; and

determining that the fourth amino acid sequence 1s clas-

sified according to the first classification.

16. The system of claim 14, wherein the first classification
corresponds to proteins having at least one of a first struc-
tural feature or a first biophysical property and the second
classification corresponds to proteins having at least one of
a second structural feature or a second biophysical property.

17. The system of claim 14, wherein the first classification
corresponds to a first range of values of a structural property
or a first range of values of a biophysical property and the
second classification corresponds to a second range of
values of the structural property or a second range of values
of the biophysical property.

18. The system of claim 10, wherein the one or more
non-transitory computer readable media store additional
computer-executable instructions that, when executed by the
one or more hardware processors, cause the one or more
hardware processors to perform additional operations com-
prising:

analyzing a third amino acid sequence included in the

third amino acid sequences to determine a probability
that a third protein corresponding to the third amino
acid sequence has a value of a structural feature
included in the second group of features that 1s within
a specified range of values;

determining that the probability corresponds to a thresh-

old probability; and

determining that the third amino acid sequence 1s to be

included in the third training dataset.

19. One or more non-transitory computer-readable stor-
age media storing computer-executable instructions that,
when executed by one or more hardware processors, cause
the one or more hardware processors to perform operations
comprising;
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obtaining a first training dataset including first amino acid

sequences of first proteins, individual first proteins
having one or more first features of a first group of
features:;

performing a first training process using the first training

dataset that includes:

encoding individual first amino acid sequences as a
matrix according to amino acids located at positions
of individual first proteins to produce a plurality of
matrices corresponding to encoded versions of the
first amino acid sequences;

generating mput data using a random number generator
or pseudo-random number generator, wherein the
input data 1s provided to a generating component of
a generative adversarial network;

producing, by the generating component and based on
the mput data, generated sequences that correspond
to additional amino acid sequences, wherein the
generated sequences are represented as vectors ndi-
cating amino acids located at a number of positions;

computationally analyzing, by a challenging compo-
nent of the generative adversarial network and
implementing a distance function, the vectors corre-
sponding to the generated sequences and the plural-
ity of matrices corresponding to the encoded ver-
sions of the first amino acid sequences to produce
challenging component output indicating differences
between the generated sequences and the first amino
acid sequences; and

moditying, based on the challenging component out-
put, at least one of one or more parameters, one or
more weights, or one or more variables of one or
more machine learning models of the generating
component until a loss function of the generating
component 1s minimized to produce a trained version
of the generating component;

obtaining a second tramming dataset including second

amino acid sequences of second proteins, individual
second proteins of the second proteins having one or
more second features of a second group of features, the
second group of features being different from the first
group ol features;

performing transfer learning with respect to the trained

version ol the generating component based on the
second training dataset, wherein the transfer learning
includes moditying at least one of the one or more
parameters, the one or more weights, or the one or more
variables of the one or more machine learning models
of the generating component in response to minimizing
the loss function of trained version of the generating
component with respect to the second traiming dataset
produce a modified version of the generating compo-
nent, wherein the generating component produces sec-
ond additional amino acid sequences of second addi-
tional proteins having at least one second feature of the
one or more second features:

producing, by the modified version of the generating

component, third amino acid sequences of third pro-
teins, individual third proteins having at least a portion
of the one or more second features, and the third amino
acid sequences being greater in number than the second
amino acid sequences;

performing an additional traiming process for an inferen-

t1al model using a third training dataset that includes at
least a portion of the third amino acid sequences to
produce a trained version of the inferential model, the
trained version of the inferential model to classily
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amino acid sequences having features that correspond
to at least a portion of the second group of features;

obtaining fourth amino acid sequences of fourth proteins;
and

determining, by the trained version of the inferential 5

model, one or more classifications for the fourth pro-
teins, the one or more classifications indicating at least
one or more structural features of the fourth proteins.

20. The one or more non-transitory computer-readable
storage media of claim 19, storing additional computer- 10
readable 1nstructions that when executed by the one or more
hardware processors, cause the one or more hardware pro-
cessors to perform additional operations comprising:

determining, by the inferential model, a first probability

that a fourth amino acid sequence of the fourth amino 15
acid sequences corresponds to a protein having a first
classification;

determining, by the inferential model, a second probabil-

ity that the fourth amino acid sequence corresponds to

a protein having a second classification; 20
determining that the first probability satisfies a threshold

probability; and

determining that the fourth amino acid sequence 1s clas-

sified according to the first classification,

wherein the first classification corresponds to a first range 25

of values of a structural property or a first range of
values of a biophysical property and the second clas-
sification corresponds to a second range of values of the
structural property or a second range of values of the
biophysical property. 30
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