12 United States Patent

Shaver et al.

US011948664B2

US 11,948,664 B2
Apr. 2, 2024

(10) Patent No.:
45) Date of Patent:

(54) AUTOENCODER WITH GENERATIVE
ADVERSARIAL NETWORK TO GENERATE
PROTEIN SEQUENCES

(52) U.S. CL
CPC ... G16B 40/20 (2019.02); GO6N 3/0455
(2023.01); GO6N 3/0475 (2023.01); G16B

40/30 (2019.02)

(71) Applicant: Just-Evotec Biologics, Inc., Seattle, (58) Field of Classification Search
WA (US)
None
(72) Inventors: Jeremy Martin Shaver, Lake Forest See application file for complete search hustory.
Park, WA (US); Tileli Amimeur,
Seattle, WA (US); Randal Robert (56) References Cited
Ketchem, Snohomish, WA (US) |
U.S. PATENT DOCUMENTS
(73) Assignee: Just-Evotec Biologics, Inc., Seattle,
WA (US) 2013/0324477 Al 12/2013 Bernard et al.
2015/0213193 Al 7/2015 Apte et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35 . _
U.S.C. 154(b) by 0 days. FOREIGN PATENT DOCUMENTS
: EP 3051450 Al 8/2016
(21) Appl. No.: 150027577 WO WO0-2022061294 Al 3/2022
(22) PCT Filed: Sep. 21, 2021
OTHER PUBLICATIONS
(86) PCT No.: PCT/US2021/051325 | o |
“International Application Serial No. PCT/US2021/051325, Inter-
§ 371 (¢)(1), national Search Report dated Dec. 16, 20217, 2 pgs.
(2) Date: Mar. 21, 2023 :
(Continued)
(87) PCT Pub. No.: W02022/061294 |
Primary Examiner — Leon Viet (Q Nguyen
PCT Pub. Date: Mar. 24, 2022 (74) Attorney, Agent, or Firm — Schwesman Lundberg &
(65) Prior Publication Data Woessner, BA.
US 2023/0335222 Al Oct. 19, 2023 (57) ABSTRACT
Related U.S. Application Data Amino acid sequences of proteins can be produced using an
(60) Provisional application No. 63/081,050, filed on Sep. autoencoder. For example, amino acid sequences of variant
21, 2020. proteins can be produced by an autoencoder that 1s fed an
amino acid sequence ol a base protein as input. A decoding
(51) Int. CL. component of the autoencoder can include at least one or
G168 4020 (2019.01) more components of a generative adversarial network.
GO6N 3/0455 (2023.01)
(Continued) 15 Claims, 7 Drawing Sheets
100 \
112
ﬁ AN —_ 120 N
TRAINING DaTa | 114 122 | Base SEQUENCE DATA
TRAINING ,,/ \{ BASE SEQUENCE(S)
SEQUENCE(S)
T 102 116
, AN f ™~ ,,
v AUTOENCODER _ { TRAINED AUTOENCODER 106 ~__
4 1110~ 106 DECODING : NA24 0 130 {
= ™~ COMPONENT >~ 190 \“fMODsFiEB* DECODING
ENCODING FIRST , 1 TRAINED SECOND | SECOND | COMPONENT
Component [7] COPE ¥ | GENERATIVE | ||E=> |} ENCODING % CODE - ~ . ;r-—h [—
DATA / i{gﬁ:ﬂ; COMPONENT DATA ; DaTA | |{ADVERsARIAL
T 108 . . i o8 /’L | NETWORK(S) |
\ 118 -
128 N v

\ VARIANT SEQUENCE(S])
/ VARIANT SEQUENCE DATA

126

US 11,948,664 B2
Page 2

(51) Int. CL

GO6N 3/0475 (2023.01)
G168 40/30 (2019.01)
(56) References Cited

U.S. PATENT DOCUMENTS

11/2017 Liu et al.
6/2019 Madani et al.
8/2020 Costellocouven... G16B 40/20
4/2022 Fealacoevevan.. G16B 40/20

2017/0328194 Al
2019/0197358 Al
2020/0273541 Al*
2022/0122692 Al*

OTHER PUBLICATIONS

“International Application Serial No. PCT/US2021/051325, Written

Opinion dated Dec. 16, 20217, 5 pgs.

L1, et al., “Grass: Generative recursive autoencoders for shape
structures”, ACM Transactions on Graphics (TOG) 36.4 (2017),

Retrieved on Nov. 12, 2021 from: <https://dl.acm.org/doi/abs/10.
1145/3072959.3073637>, (Jul. 20, 2017), 1-14.

“International Application Serial No. PCT US2021 051325, Inter-
national Preliminary Report on Patentability dated Mar. 30, 2023,
7 pgs.

“European Application Serial No. 21870417.9, Extended European
Search Report dated Jan. 31, 20247, 4 pgs.

Anand, Namrata, et al., “Generative Modeling for Protein Struc-
tures”, [Online] Retrieved from the internet: <https//proceedings.
neurips.cc/paper_files/paper/2018/file/
afa299a4dld8c52e75dd8a24c3ce 534f-Paper.pdf>, (Jan. 1, 2018),
12 pgs.

Yuyang, Wang, ¢t al., “Bio-informed Protein Sequence Generation
for Multi-class Virus Mutation Prediction”, [Online| Retrieved from
the internet: <https ://www.biorxiv.org/content/10.1101/2020.06.11.
146167vl.full.pdf>, (Jun. 12, 2020), 15 pgs.

* cited by examiner

L 2.nbi14

US 11,948,664 B2

ocl
V.1V FONINDIS INVIHNVA
(S)3ONINDIAS LNVIMVA
8C1
e~ 801 ot 701
~.
5 i} ST TR “ (pona || - =)
. AL AaN v - vAvd | VLIV LNINOJINO VINYSHINAY [vivQ
S v _ 3990 e 4 3007 ONIQOON IAILYYINID) 3007 LNINOdNOY
ONIJOD3(] | A=1E190N NINOdNOD <
- 0Ct vcl ONIQO23A Q01 OLl
- 90}l ¥3Q0ONIOLNY AIANIVY | HIA0ONIOLNY L
3 ; _
&
5 oLl
w (S)3ON3IND3G
« ($)3ON3INDAS 3ASVY ONINIVY |

V.1V dONdNOIS 38y

cCl PLL | YLVQ ONINIVY |

0cCl
cli

001

U.S. Patent

(S)3oNaINDISQ

LNVIEVA

US 11,948,664 B2

JdJAOONIOLNY
J=ANIVE L

Z 91nbi4

(S)aoNaNO3AQ

ASVY

VLIV LNdN]

S} WA 007

80¢
9T m 707 ved
Oce 1NdLNO
NOILYOI4ISSY1) ¥0c
(S)LNINOLINOD | ”

ﬂ SNILYHINTO) 4 Wd LNINOJINOD

S aNIv¥H

e~ (S)LNINOJINOD | Oce - ; ONILYHINIS)

.m ONILYHANAD VLV(Q LNINOdNOY) | | OERERRER

ININOJINO D Q77 0c7 oLz
ONIAOD3A(]
< ¥IAOONIOLNY o77 LNINOAINO?
m ONIONTTIVHO | Ngnz
3 Ve

M SSI00HH ONINIVY | ¥IA0INIOLNY FdNLOILHOEY AHOMLAN

= IVIMYSHIAQY IAILYHINID
-«

8le
¢eo SIONINDIAS | 707
A3™¥NLONYLS

=

L
M VivV(] cle
A ONISSIO0US TN JONINDIS

. VLV(NIZLO¥d

s ™
-

US 11,948,664 B2

Sheet 3 of 7

Apr. 2, 2024

U.S. Patent

VLV({] FONINO03S

INVIdVYA ANOOJ4S

LININOJINOD
ONIQ093J

| v1vQ 300D 2

" ININOJINOY)
ONIJOONT 2

H3AOONIOLNY
A3aNIVY] ANOD3S

V.V 3ONINO0IS

gyl gy gyl il iy

ViV(] 3ON3INO0IS

INVIHVA 1Sd1

¢ aJnbi4 ;

ViV d0N3IN0IS

vivQ 3ON3INDIS NIZLONd aMIH |

NIZLONA 700
HLYNO A ope Se—
- 0€E
(SINHOMLIAN VIHVYSHINAY
A1
(S)LNINOJINO AAILVHANIS) aNOD3S
ONILYHINID SSAD0HA ONINIVY |
A3INIVY | ANOD3S MHOMLIN VIHYSHINAY TAS
8Vt IAILYHINIS) ANOD3AS voe
1225
oF¢ (S)MHOMLAN TVINYSHINAY

(S)LNINOJNOD) AAILVEEANTS) 1Sl

ONILVYHINGL)

dUJOONIOLNY ANOO3S

SS300dd ONINIVY | 8EE QaNIvy | 1SHI4 SS300dd ONINIVY |
¥3AOONIOLNY ANOO3S _ MHYOMLIN TVIEVSHIAAY
e gee 20¢ AALLVHANID) LSYI-
ZYe ¢0t

4>

AINANOJINO D

42>
ONIQ023q .} v1vQ FJON3INO3S

Oce NIFLO¥d LS¥iA
HIAOONIOLNY LSHI4

S85300dd ONINIVE |

H3A0ONIOLNY 1SHI oLe 90¢

0G¢

Viv(] 340D

.M.w_\

LNINOJNO D
ONITOIN

Pmr

Qct HIAAOONIOLNY 8L¢
JaNivy | 1S¥i4

oLE v1vQ 3ON3INOIS |
NEIOXR
ANOO3S
vLv(Q JON3INOIS A 4/
asvg 15H14 A e — 00€

US 11,948,664 B2

Sheet 4 of 7

Apr. 2, 2024

U.S. Patent

3ON3INDIAS
NIZLO¥d
LNVIYVA N

AT

JONINOIS
NI3LOHA

INVINVA 2

3ONINDIQ
NI3LOYd
INVIMYA

sk

V1v(] 3ONINDISQ

LINVIMVYA

13%

0Cy |

acy |

9Cv |

(S)MHOMLIN

VIHVSdIAAY

AN LVEHENDLS)

INZINOdNC D)
ONIAOIE(

Ol

80F

7, 24nDI 4

vlvQ 3009
a3idIaon N

v1v(3007
Q31dIAON 2

Viv(] 3d00 o0V
d-A141A0N _

%m_‘.

Oc¥

NOILVOIJdIAOA vivV(] 300D

HAJOONDOLNY dIaNIvE]

Olv
JONINDIAG
NI3LOYd ISV
v1v¥(] 3IONINDIAS 3svy R

INANOdINOD)
ONITOONS

NIV |

AR 174017

cOv

9[0)7

U.S. Patent Apr. 2, 2024 Sheet 5 of 7 US 11,948,664 B2

500

N

(GENERATE CODE DATA BY AN ENCODING COMPONENT OF AN 502
AUTOENCODER THAT REPRESENTS A FIRST AMINO ACID SEQUENCE

OF A BASE PROTEIN

504
MODIEY THE CODE DATA TO PRODUCE MODIFIED CODE DATA
PROVIDE THE MODIFIED CODE DATA TO A DECODING COMPONENT 506
OF THE AUTOENCODER THAT INCLUDES A GENERATING
COMPONENT OF A GENERATIVE ADVERSARIAL NETWORK
GENERATE, USING THE GENERATING COMPONENT, A SECOND 508

AMINOG ACID SEQUENCE OF A VARIANT PROTEIN BASED ON THE
MODIFIED CODE DATA

Figure 5

U.S. Patent Apr. 2, 2024 Sheet 6 of 7 US 11,948,664 B2

600

N

PERFORM A FIRST TRAINING PROCESS USING A FIRST TRAINING 602
DATASET INCLUDING A FIRST PLURALITY OF AMINO ACID SEQUENCES OF

PROTEINS TO PRODUCE A TRAINED GENERATING COMPONENT OF A
GENERATIVE ADVERSARIAL NETWORK

604
PRODUCE A SECOND TRAINING DATASET THAT INCLUDES A SECOND
PLURALITY OF AMINO ACID SEQUENCES OF PROTEINS
(GENERATE AN AUTOENCODER THAT INCLUDES AN ENCODING 606

COMPONENT AND A DECODING COMPONENT COMPRISING THE TRAINED
GENERATING COMPONENT OF THE GENERATIVE ADVERSARIAL NETWORK

PERFORM A SECOND TRAINING PROCESS USING THE SECOND TRAINING
DATASET TO GENERATE A TRAINED VERSION OF THE AUTOENCODER 608

THAT INCLUDES A TRAINED VERSION OF THE ENCODING COMPONENT
THAT GENERATES CODE DATA REPRESENTING ONE OR MORE AMINO
ACID SEQUENCES PROVIDED AS INPUT TO THE ENCODING COMPONENT

PROVIDE BASE SEQUENCE DATA TO THE TRAINED VERSION OF THE 610
AUTOENCODER THAT CORRESPONDS TO AN AMINO ACID SEQUENCE OF A
BASE PROTEIN

612
(GENERATE AN AMINO ACID SEQUENCE OF A VARIANT PROTEIN BASED ON

THE AMINO ACID SEQUENCE OF THE BASE PROTEIN

Figure 6

U.S. Patent Apr. 2, 2024 Sheet 7 of 7 US 11,948,664 B2

700

\

704 PROCESSOR

712
200 DISPLAY UNIT
| INSTRUCTIONS
706 MAIN MEMORY 244
o ALPHA-NUMERIC |
'INSTRUCTIONS INPUT DEVICE
710
T e
716

Ul NAVIGATION
DEVICE

702 NJINSTRUCTIONS

STORAGE DEVICE |~ 718

MACHINE 26
READABLE

MEDIUM

INSTRUCTIONS H 102

SIGNAL 720
728 ' GENERATION
DEVICE

255 NETWORK
INTERFACE

DEVICE

24

SENSOR(S)

Figure 7

US 11,948,664 B2

1

AUTOENCODER WITH GENERATIVE
ADVERSARIAL NETWORK TO GENERATE

PROTEIN SEQUENCES

CROSS-REFERENCE TO RELATED
APPLICATION(S) AND PRIORITY CLAIM

This application 1s a U.S. national stage filing under 35
US.C. 371 from International Application No. PCT/
US2021/051325, filed on 21 Sep. 2021, and published as
WO 2022/061294 Al on 24 Mar. 2022, which claims
priority to U.S. Provisional Application No. 63/081,050 filed
on 21 Sep. 2020 and entitled “Autoencoder with Generative
Adversarial Network to Generate Protein Sequences,” the
entirety of which are incorporated herein by reference.

BACKGROUND

Proteins are biological molecules that are comprised of
one or more chains of amino acids. Proteins can have
various functions within an organism. For example, some
proteins can be involved 1n causing a reaction to take place
within an organism. In other examples, proteins can trans-
port molecules throughout the orgamism. In still other
examples, proteins can be involved in the replication of
genes. Additionally, some proteins can have therapeutic
properties and be used to treat various biological conditions.
The structure and function of proteins are based on the
arrangement ol amino acids that comprise the proteins. The
arrangement of amino acids for proteins can be represented
by a sequence of letters with each letter corresponding to an
amino acid at a respective position. The arrangement of
amino acids for proteins can also be represented by three
dimensional structures that not only indicate the amino acids
at various locations of the protein, but also indicate three
dimensional features of the proteins, such as an o-helix or a

3-sheet.

BRIEF DESCRIPTION OF TH.

(Ll

DRAWINGS

The present disclosure 1s 1illustrated by way of example
and not limitation 1n the figures of the accompanying
drawings, in which like references indicate similar elements.

FIG. 1 1s a diagram 1llustrating an example framework to
generate an autoencoder that includes a decoding component
that implements one or more components of a generative
adversarial network, 1n accordance with some 1mplementa-
tions.

FI1G. 2 1s a diagram 1llustrating an example framework to
train a generative adversarial network for use as a decoding,
component of an autoencoder, in accordance with some
implementations.

FIG. 3 1s a diagram 1llustrating an example framework to
perform transier learning with respect to a first generative
adversarial network and produce a second generative adver-
sarial network that can be used as a decoding component of
an autoencoder, 1 accordance with some implementations.

FIG. 4 1s a diagram 1llustrating an example framework to
modily code data produced by an encoding component of an
autoencoder to generate amino acid sequences of variants of
a base protein, 1n accordance with some 1implementations.

FIG. 5 15 a flow diagram 1llustrating an example process
to modily code data produced by an encoding component of
an autoencoder to produce amino acid sequences of variants
of a base proteimn using one or more components of a
generative adversarial network as a decoding component of
the autoencoder, 1 accordance with some implementations.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 6 1s a flow diagram 1illustrating an example process
to generate an autoencoder that produces amino acid

sequences of variants using one or more components of a
generative adversarial network as a decoding component of
the autoencoder, 1n accordance with some implementations,
in accordance with some implementations.

FIG. 7 illustrates a diagrammatic representation of a
machine 1n the form of a computer system within which a set
ol instructions may be executed for causing the machine to
perform any one or more of the methodologies discussed
herein, according to an example embodiment.

DETAILED DESCRIPTION

Proteins can have many beneficial uses within organisms.
In particular situations, proteins can be used to treat diseases
and other biological conditions that can detrimentally impact
the health of humans and other mammals. In various sce-
narios, proteins can participate in reactions that are benefi-
cial to subjects and that can counteract one or more biologi-
cal conditions being experienced by the subjects. In some
examples, proteins can also bind to target molecules within
an organism that may be detrimental to the health of a
subject. For these reasons, many individuals and organiza-
tions have sought to develop proteins that may have thera-
peutic benefits.

The development of proteins can be a time consuming and
resource intensive process. Often, candidate proteins for
development can be 1dentified as potentially having various
biophysical properties, structural features (e.g., negatively
charged patches, hydrophobic patches), three-dimensional
(3D) structures, and/or behavior within an organism. In
order to determine whether the candidate proteins actually
have the characteristics of interest, the proteins can be
synthesized and then tested to determine whether the actual
characteristics of the synthesized proteins correspond to the
desired characteristics. Due to the amount of resources
needed to synthesize and test proteins for specified biophysi-
cal properties, structural features, 3D structures, and/or
behaviors, the number of candidate proteins synthesized for
therapeutic purposes 1s limited. In some situations, the
number of proteins synthesized for therapeutic purposes can
be limited by the loss of resources that takes place when
candidate proteins are synthesized and do not have the
desired characteristics.

The techniques, methods, and systems described herein
can 1nclude using an autoencoder to produce amino acid
sequences of variants of a base protein. The autoencoder can
include an encoding component and a decoding component.
The encoding component can include a first number of
computational layers, such as a first number of convolu-
tional layers, and the decoding component can include a
second number of computational layers, such as a second
number of convolutional layers. The encoding component
can produce code data that 1s a representation of input data
provided to the encoding component. The code data can be
provided to the decoding component and the decoding
component can produce output that corresponds to the code
data.

The decoding component can include one or more com-
ponents of a generative adversarial network. For example,
the decoding component can include at least a generating
component of a generative adversarial network. In various
implementations, the generative adversarial network can be
trained prior to the training of the autoencoder. The genera-
tive adversarial network can be trained using a set of training
data that corresponds to amino acid sequences of proteins.

US 11,948,664 B2

3

At least a trained generating component of the generative
adversarial network can be implemented as a decoding
component for the autoencoder. Additionally, the trained
generating component of the generative adversarial network
can produce a training dataset that can be used to train the
autoencoder.

During the training of the autoencoder, the computational
layers of the encoding component can be modified while the
computational layers of the decoding component are not
modified. The traiming of the autoencoder can include com-
paring output data produced by the decoding component
with 1mput data provided to the encoding component. In one
or more 1illustrative examples, output data corresponding to
amino acid sequences produced by the decoding component
can be analyzed with respect to input data corresponding to
amino acid sequences included 1n the training dataset. Based
on differences between the output of the decoding compo-
nent and the input provided to the encoding component,
modifications can be made to the encoding component. For
example, at least one of weights, functions, or parameters of
the computational layers of the encoding component can be
modified based on the differences between the output data
produced by the decoding component and the mput data
provided to the encoding component until the differences are
mimmized. In various examples, the weights, functions,
and/or parameters of the computational layers of the decod-
ing component can remain fixed during the training of the
autoencoder. In this way, the training of the autoencoder
according to implementations described herein can utilize
fewer computational resources than existing techniques for
the training of autoencoders that modily features of the
computational layers of both the encoding component and
the decoding component.

After training, the autoencoder, base sequence data can be
provided to the encoding component. The base sequence
data can correspond to an amino acid sequence of a base
protein. The encoder can produce code data that 1s a repre-
sentation of the base sequence data. The decoding compo-
nent can generate variant protein sequences based on the
code data. In one or more examples, the code data can be
modified, and the modified code data can be provided to the
decoding component. The decoding component can then use
the modified code data to generate variant sequence data that
corresponds to amino acid sequences of vanants of the base
protein. In one or more additional examples, the decoding
component can generate variant sequence data based on the
code data without modification of the code data. To 1llus-
trate, the code data can be processed multiple times by the
decoding component and the decoding component can gen-
erate data corresponding to diflerent amino acid sequences
of varnants of the base protein for imndividual passes of the
code data through the decoding component. As used herein,
variant, variant protein, and similar terms can refer to a
protein that differs from a base protein at one or more
positions. For example, an amino acid sequence of a base
protein can indicate amino acids located at a number of
positions of the base protein and a variant of the base protein
can include at least one position having an amino acid that
1s different from the base protein at the same, corresponding
position. The variants of the base protein can have at least a
threshold amount of identity with the base protein.

In one or more examples, transier learning techniques can
be implemented such that an autoencoder can produce
variants of a base protein that have one or more character-
istics of interest. The transier learning can be implemented
with respect to a generative adversarial network that
includes a generating component that comprises the decod-

10

15

20

25

30

35

40

45

50

55

60

65

4

ing component of the autoencoder. In these scenarios, the
training data used 1n the transfer learning process for the
generative adversarial network can include a number of
amino acid sequences of proteins having the one or more
characteristics of interest. In various examples, transfer
learning can be implemented to cause the autoencoder to
produce variants of a base protein that have one or more
structural features of interest. In one or more illustrative
examples, transfer learning can be implemented such that
the autoencoder can generate amino acid sequences of
proteins having one or more polar regions having a specified
range ol amino acids included 1n each polar region. Addi-
tionally, transfer learning can be implemented to cause the
autoencoder to produce variants of the base protein that have
one or more biophysical properties of interest. To illustrate,
transter learning can be used to produce an autoencoder that
generates amino acid sequences of proteins that have at least
a threshold melting temperature.

The implementations described herein that include train-
ing a generative adversarial network and then training an
autoencoder that includes the generating component of the
generative adversarial network as a decoding component can
result 1n increased efliciency with respect to training the
autoencoder. For example, since the decoding component
has already been trained to generate amino acid sequences
having a set of characteristics, a reduction 1n the adjustments
to the encoding component during training 1s realized in
relation to a situation where the encoding component and the
decoding component are being trained concurrently. To
illustrate, a generative adversarial network can be trained to
generate amino acid sequences that have characteristics of
antibodies. In these situations, since the decoding compo-
nent 1s already trained to produce amino acid sequences of
antibodies, the encoding component 1s able to be trained
more quickly and efliciently to produce amino acid
sequences that include characteristics of antibodies based on
the feedback obtained from the decoding component. Fur-
ther, training a generating component of a generative adver-
sarial network as a decoding component of an autoencoder
to produce amino acid sequences of antibodies can cause
higher order interactions of the antibodies to be embedded 1n
the weights of the generating component and, 1n this way,
modifications to the code data can produce variant amino
acid sequences that have chemically relevant changes that
may be dificult to predict from first order principles.

In addition, the systems, techniques, architectures, and
processes described herein can be implemented such that
changes to the code data can result 1n linear or generally
linear changes of one or more variant amino acid sequences
produced with respect to one or more base sequences. For
example, relatively small changes to the code data can result
in relatively small changes to the vanant amino acid
sequences 1n relation to base amino acid sequences while
relatively large changes to the code data can result in
relatively large changes to the variant amino acid sequences
in relation to the base amino acid sequences. In this way, the
amount of variation produced 1n the variant sequences can
be controlled to a greater degree than existing systems and
processes. Also, manual modifications made to an input
amino acid sequence can be realized 1n the code data in such
a way that changes to amino acids at other positions of the
mput sequence that may be necessitated by the initial,
manual change(s) are produced i1n the variant amino acid
sequences. To 1llustrate, to preserve one or more character-
istics of amino acid sequences produced by the decoding
component, the encoding component can modily the code
data such that variant amino acid sequences of a parent

US 11,948,664 B2

S

amino acid sequence that has been manually modified 1n at
least one position also have the one or more characteristics.

As used herein, structural features of proteins can refer to
features of one or more amino acids or features of one or
more groups of amino acids included 1n a protein molecule.
Examples of structural features can include at least one of
hydrophobic regions that include one or more amino acids,
negatively charged regions that include one or more amino
acids, positively charged regions that include one or more
amino acids, basic regions that include one or more amino
acids, acidic regions that include one or more amino acids,
regions that include one or more aromatic amino acids,
neutral regions that include one or more amino acids, a
measure of diversity of neighboring residues, a measure of
residues interacting 1n 10nic bonds, or regions of amino acids
participating in at least one of an a-helix, a -turn, a [3-sheet,
or an £2-loop. In addition, as used herein biophysical prop-
erties of proteins can refer to characteristics that can be
measured with respect to a protein molecule. Examples of
biophysical properties of proteins can include at least one of
melting temperature, unfolding temperature, measures of
aggregation, measures of stability, measures of molecular
welght, measures of interactions between regions as deter-
mine by self-interaction nanoparticle spectroscopy (SINS),
measures of viscosity, or measures ol solubility.

FIG. 1 1s a diagram 1llustrating an example framework
100 to generate an autoencoder that includes a decoding
component that implements one or more components of a
generative adversarial network, i accordance with some
implementations. The framework 100 can include an auto-
encoder 102 that comprises an encoding component 104 and
a decoding component 106. The autoencoder 102 can com-
prise at least one of autoencoder computer-readable mnstruc-
tions, autoencoder logic, or autoencoder circuitry. In addi-
tion, the encoding component 104 can include at least one of
encoding computer-readable instructions, encoding logic, or
encoding circuitry. Further, the decoding component 106
can include at least one of decoding computer-readable
istructions, decoding logic, or decoding circuitry.

The encoding component 104 can include first computa-
tional layers with each first computational layer comprising,
a number of nodes that each have at least one function and
one or more weights. The decoding component 106 can
include second computational layers with each second com-
putational layer comprising a number of nodes that each
have at least function and one or more weights. In various
examples, a portion of the first computational layers and a
portion of the second computational layers can include fully
connected layers. In one or more examples, at least a portion
of the functions and/or weights of the first computational
layers can be different with respect to the functions and/or
weilghts of the second computational layers. The decoding
component 106 can include at least a portion of one or more
generative adversarial networks 108. For example, the
decoding component 106 can include a generating compo-
nent of the one or more generative adversarnal networks 108.
The encoding component 104 and/or the decoding compo-
nent The one or more generative adversarnal networks 108
can include at least one of generative adversarial network
computer-readable instructions, generative adversarial net-
work logic, or generative adversarial network circuitry.

The encoding component 104 can generate first code data
110 that 1s a representation of input provided to the encoding
component 104. The first code data 110 can correspond to a
compressed version of mput data provided to the encoding
component 104. The first code data 110 1s provided to the
decoding component 106. The decoding component 106 can

5

10

15

20

25

30

35

40

45

50

55

60

65

6

generate output of the autoencoder 102 based on the first
code data 110. In various examples, the decoding component
106 can generate output data that corresponds to the 1nput
data provided to the encoding component 104.

The autoencoder 102 can undergo a training process using,
training data 112. The tramning of the autoencoder 102 can
include training of the encoding component 104. In one or
more examples, the decoding component 106 can be traimned
betore the training of the encoding component 104 using the
training data 112 takes place. That 1s, the one or more
generative adversarial networks 108 can be trained outside
ol a training process for the autoencoder 102. In various
examples, the one or more generative adversarial networks
108 can be tramned to generate sequence data that corre-
sponds to amino acid sequences of proteins. In these sce-
narios, the encoding component 104 can be trained to
produce the first code data 110 that can be provided to the
decoding component 106 to generate the sequence data. In
one or more illustrative examples, the traiming data 112 can
include training sequences 114 that correspond to a number
of amino acid sequences of proteins. In one or more addi-
tional implementations, at least a portion of the training data
112 can be produced by the one or more generative adver-
sarial networks 108. The training data 112 can be stored by
one or more data stores that are accessible to the autoencoder
102.

During the training of the encoding component 104, a
training sequence 114 can be provided to the encoding
component 104 and the encoding component 104 can gen-
crate the first code data 110 that 1s a representation of the
training sequence 114. In one or more illustrative examples,
the first code data 110 can 1nclude a compressed version of
the training sequence 114 that utilizes less data to represent
the training sequence 114 than the imitial data included in the
training data 112 that was used to represent the traiming
sequence 114. The first code data 110 can then be provided
to the decoding component 106 and the decoding component
106 can generate output based on the first code data 110. The
output generated by the decoding component 106 can
include an output sequence that can be analyzed with respect
to the training sequence 114 that the encoding component
104 used to generate the first code data 110. Dafferences
between the output sequence and the training sequence 114
can be used to modily at least one loss function of the
autoencoder 102. The training process for the autoencoder
102 can minimize the loss function of the autoencoder 102.
In one or more examples, minimizing the loss function of the
autoencoder 102 can include minimizing differences
between the output sequences generated by the decoding
component 106 and the traiming sequences 114 obtained by
the encoding component 104. In at least some 1implementa-
tions, the tramning of the autoencoder 102 can be complete
when at least a threshold percentage of output sequences
produced by the decoding component 106 have less than a
threshold number of differences with respect to correspond-
ing training sequences 114 used by the encoding component
104 to produce the first code data 110. In one or more
additional examples, the encoding component 104 can be
trained using training sequences 114 that the decoding
component 106 1s unable to reproduce. In these instances,
the training of the encoding component 104 can be complete
in response to determining that the loss function of the
autoencoder 102 has been mimmized.

After training of the autoencoder 102 1s complete, a
trained autoencoder 116 can be produced. The trained auto-
encoder 116 can include a trained encoding component 118
and the decoding component 106. In these implementations,

US 11,948,664 B2

7

the computational layers of the decoding component 106
have not been modified or have been modified to a relatively
minor degree during the traiming of the autoencoder 102.
The trained autoencoder 116 can produce amino acid
sequences of variants of base proteins. In one or more
illustrative examples, the proteins can include amino acid
sequences of fibronectin type III (FNIII) proteins, avimers,
antibodies, VHH domains, kinases, zinc fingers, T-cell
receptors, combinations thereof, and the like. In various
examples, the amino acid sequences produced by the trained
autoencoder 116 can include portions of proteins. In one or
more implementations, the trammed autoencoder 116 can
produce amino acid sequences of portions of antibodies,
such as at least a portion of one or more complementarity
determining regions (CDRs) of antibodies, at least a portion
ol one or more light chains of antibodies, at least a portion
of one or more heavy chains of antibodies, at least a portion
of one or more variable regions of antibodies, at least a
portion of one or more constant regions of antibodies, at
least a portion of one or more hinge regions of antibodies,
at least a portion of one or more antigen binding regions of
antibodies, one or more combinations thereof, and so forth.

In one or more examples, base sequence data 120 can be
obtained by the traimned encoding component 118. The base
sequence data 120 can include one or more base sequences
122 that correspond to one or more amino acid sequences of
one or more base proteins. The trained encoding component
118 can generate second code data 124 based on the base
sequence data 120. The second code data 124 can corre-
spond to a representation of the base sequence data 120. In
various examples, the second code data 124 can correspond
to a compressed version of the base sequence data 120. The
decoding component 106 can generate variant sequence data
126 based on the second code data 124. The wvariant
sequence data 126 can include one or more variant
sequences 128 that correspond to one or more amino acid
sequences ol proteins that are variants of the base proteins
associated with the base sequences 122. For example, a
variant sequence 128 can include at least one amino acid that
1s different from the amino acid located at the same position
in a corresponding base sequence 122.

In situations where the encoding component 104 1s trained
to produce the first code data 110 such that the decoding
component 106 1s unable to reproduce the training
sequences 114, the second code data 124 may not be
modified when provided to the decoding component 106.
Thus, the second code data 124 generated by the trained
encoding component 118 can be used directly by the decod-
ing component 106 to produce one or more variant
sequences 128 that correspond to one or more base
sequences 122. In additional scenarios, the second code data
124 can be modified to produce modified second code data
130 that 1s used by the decoding component 106 to generate
one or more variant sequences 128 that correspond to one or
more base sequences 122. In one or more illustrative
examples, the second code data 124 can include a matrix
having a plurality of numerical values. In these instances,
the modified second code data 130 can include modifications
to one or more of the numerical values included in the
matrix. The number of numerical values 1n the matrix that
are modified can correspond to a number of changes 1n the
base sequence 122 that are included in the one or more
variant sequences 128. To illustrate, as the number of
numerical values modified in the matrix from the second
code data 124 to the modified second code data 130
increases, the number of positions of the one or more variant
sequences 128 that are different from the corresponding

10

15

20

25

30

35

40

45

50

55

60

65

8

positions 1n the base sequence 122 can also increase. Addi-
tionally, the magnitude of changes to the individual numeri-
cal values included in the matrix corresponding to the
second code data 124 used to produce the modified second
code data 130 can impact the number of positions of the base
sequence 122 that are modified in the one or more variant
sequences 128 produced based on the modified second code
data 130. For example, as the magnitude of changes to
individual numerical values of the matrix included in the
second code data 124 increases, the number of positions of
the base sequence 122 that have amino acids that are
modified 1n relation to the one or more variant sequences
128 can also increase. That 1s, as at least one of the number
of numerical values of the matrix increases or the magnitude
of change of individual numerical values of the matrix
increases to produce the modified second code data 130, the
amount of 1dentity between the one or more base sequences
122 and the one or more variant sequences 128 decreases.

In one or more additional illustrative examples, the 1ndi-
vidual numerical values included 1n the matrix can range
from -1 to +1. In these scenarios, a number of changes to
one or more variant sequences 128 with respect to the one
or more base sequences 122 and an amount of change 1n the
individual values of the matrix from the second code data
124 to the modified second code data 130 can indicate a
number of differences between the one or more base
sequences 122 and the one or more variant sequences 128.
For example, an adjustment 1n one to three numerical values
of the second code data 124 by from about 2% to about 5%
to produce the modified second code data 130 can produce
one or more variant sequences 128 having from about one
residue to about ten residues that are different from the one
or more base sequences 122. The adjustments to the 1ndi-
vidual numerical values of the second code data 124 can be
produced according to a random or pseudo-random number
generating algorithm.

In one or more implementations, after the tramned auto-
encoder 116 1s produced, at least one transfer learning
process can be performed that can modify the amino acid
sequences produced by the one or more generative adver-
sarial networks 108 included in the decoding component
106. For example, the one or more generative adversarial
networks 108 can be imitially trained to produce amino acid
sequences of proteins and, after one or more transier learn-
ing processes are performed, the one or more generative
adversarial networks 108 can be trained to produce amino
acid sequences having one or more structural features of
interest and/or one or more specified biophysical properties
of interest. In one or more 1llustrative examples, after one or
more transier learning processes, the one or more generative
adversarial networks 108 can produce amino acid sequences
ol antibodies that have at least a threshold unfolding tem-
perature. In one or more additional illustrative examples,
alter one or more transier learning processes, the one or
more generative adversarial networks 108 can produce
amino acid sequences of antibodies that have one or more
negatively charged patches that include a specified range of
numbers ol amino acids.

The trained autoencoder 116 can be further trained in
response to the one or more generative adversarial networks
108 undergoing one or more transfer learming processes. The
turther training of the trained autoencoder 116 can produce
an additional trained autoencoder that generates amino acid
sequences of proteins having the one or more characteristics
that were the subject of the one or more transfer learming,
processes. 1o illustrate, 1n scenarios where the one or more
generative adversarial networks 108 have been subjected to

US 11,948,664 B2

9

one or more transier learning processes to train the one or
more generative adversarial networks 108 to generate amino
acid sequences of proteins having no greater than a threshold
viscosity 1n water, the trained autoencoder 116 can be further
trained to produce variant sequences 128 of proteins that >
have at least a threshold probability of having no greater

than the threshold viscosity 1n water.

FIG. 2 1s a diagram 1llustrating an example framework
200 to train a generative adversarial network for use as a
decoding component of an autoencoder, 1n accordance with
some 1mplementations. The framework 200 can include a
generative adversarial network architecture 202. The gen-
erative adversarial network architecture 202 can include a
generating component 204 and a challenging component
206. The generative adversarial network architecture 202
can include at least one of generative adversarial network
computer-readable instructions, generative adversarial net-
work logic, or generative adversarial network circuitry. In
addition, the generating component 204 can be implemented »g
using at least one of computer-readable instructions, logic,
or circuitry. Further, the challenging component 206 can be
implemented using at least one of computer-readable
istructions, logic, or circuitry.

The generating component 204 can implement one or 25
more models to generate amino acid sequences based on
input provided to the generating component 204. In various
implementations, the one or more models implemented by
the generating component 204 can include one or more
functions and one or more weights. The challenging com- 30
ponent 206 can generate output indicating whether the
amino acid sequences produced by the generating compo-
nent 204 correspond to various characteristics. The output
produced by the challenging component 206 can be pro-
vided to the generating component 204 and the one or more 35
models implemented by the generating component 204 can
be modified based on the feedback provided by the chal-
lenging component 206. In various implementations, the
challenging component 206 can analyze the amino acid
sequences generated by the generating component 204 with 40
amino acid sequences of proteins included in training data
and generate an output indicating an amount of correspon-
dence between the amino acid sequences produced by the
generating component 204 and the amino acid sequences of
proteins provided to the challenging component 206 as 45
training data. In one or more illustrative examples, the
analysis performed by the challenging component 206 with
respect to the amino acid sequences produced by the gen-
erating component 204 can include a comparison between
the amino acid sequences included in the training data and 50
the amino acid sequences produced by the generating com-
ponent 204.

In various implementations, the generative adversarial
network architecture 202 can implement one or more neural
network technologies. For example, the generative adver- 55
sarial network architecture 202 can implement one or more
recurrent neural networks. Additionally, the generative
adversarial network architecture 202 can implement one or
more convolutional neural networks. In one or more 1mple-
mentations, the generative adversarial network architecture 60
202 can implement a combination of recurrent neural net-
works and convolutional neural networks. In one or more
additional examples, the generating component 204 can
include a generator and the challenging component 206 can
include a discriminator. In one or more further implemen- 65
tations, the generative adversarial network architecture 202
can include a Wasserstein generative adversarial network

10

15

10

(WGAN). In these scenarios, the generating component 204
can 1nclude a generator and the challenging component 206
can include a critic.

In the illustrative example of FIG. 2, an input vector 208
can be provided to the generating component 204 and the
generating component 204 can produce one or more gener-
ated sequences 210 from the mput vector 208 using one or
more models. In one or more 1mplementations, the input
vector 208 can include noise data that 1s generated by a
random number generator or a pseudo-random number
generator. The generated sequence(s) 210 can be compared
by the challenging component 206 against sequences of
proteins included in protein sequence data 212 that have
been structured according to one or more schemas. The
protein sequence data 212 can include sequences of proteins
obtained from one or more data sources that store amino acid
sequences of proteins. The protein sequence data 212 can be
training data for the generative adversarial network archi-
tecture 202.

Based on similarities and/or diflerences between the gen-
erated sequence(s) 210 and the sequences obtained from the
protein sequence data 212, the challenging component 206
can generate a classification output 214 that indicates an
amount of similarity and/or an amount of difference between
the generated sequence 210 and sequences included 1n the
protein sequence data 212. In one or more examples, the
challenging component 206 can label the generated
sequence(s) 210 as zero and the sequences obtained from the
protein sequence data 212 as can be labeled as one. In these
situations, the classification output 214 can correspond to a
number from 0 and 1. In additional examples, the challeng-
ing component 206 can implement a distance function that
produces an output that indicates an amount of distance
between the generated sequence(s) 210 and the proteins
included 1n the protein sequence data 212. In these sce-
narios, the challenging component 206 can label the gener-
ated sequence(s) 210 as -1 and the encoded amino acid
sequences obtained from the protein sequence data 212 as 1.
In implementations where the challenging component 206
implements a distance function, the classification output 214
can be a number from —-o to o. In various examples, the
amino acid sequences obtained from the protein sequence
data 212 can be referred to as ground truth data.

The protein sequences included in the protein sequence
data 212 can be subject to data preprocessing 216 before
being provided to the challenging component 206. In one or
more implementations, the protein sequence data 212 can be
arranged according to a classification system before being
provided to the challenging component 206. The data pre-
processing 216 can include pairing amino acids included in
the proteins of the protein sequence data 212 with numerical
values that can represent structure-based positions within the
proteins. The numerical values can include a sequence of
numbers having a starting point and an ending point. In an
illustrative example, a T can be paired with the number 43
indicating that a Threonine molecule 1s located at a struc-
ture-based position 43 of a specified protein domain type. In
one or more illustrative examples, structure-based number-
ing can be applied to any general protein type, such as
fibronectin type III (FNIII) proteins, avimers, antibodies,
VHH domains, kinases, zinc fingers, and the like.

In one or more implementations, the classification system
implemented by the data preprocessing 216 can designate a
particular number of positions for certain regions ol pro-
teins. For example, the classification system can designate
that portions of proteins having particular functions and/or
characteristics can have a specified number of positions. In

US 11,948,664 B2

11

various situations, not all of the positions included 1n the
classification system may be associated with an amino acid
because the number of amino acids 1n a specified region of
a protein may vary between proteins. To illustrate, the
number of amino acids 1n a region of a protein can vary for
different types of proteins. In one or more examples, posi-
tions of the classification system that are not associated with
a particular amino acid can indicate various structural fea-
tures of a protein, such as a turn or a loop. In an 1llustrative
example, a classification system for antibodies can indicate
that heavy chain regions, light chain regions, and hinge
regions have a specified number of positions assigned to
them and the amino acids of the antibodies can be assigned
to the positions according to the classification system.

The data used to train the generative adversarial network
architecture 202 can impact the amino acid sequences pro-
duced by the generating component 204. For example, 1n
situations where antibodies are included in the protein
sequence data 212 provided to the challenging component
206, the amino acid sequences generated by the generating
component 204 can correspond to antibody amino acid
sequences. In another example, in scenarios where T-cell
receptors are included in the protein sequence data 212
provided to the challenging component 206 the amino acid
sequences generated by the generating component 204 can
correspond to T-cell receptor amino acid sequences. In one
or more additional examples, 1n situations where kinases are
included 1n the protein sequence data 212 provided to the
challenging component 206, the amino acid sequences gen-
crated by the generating component 204 can correspond to
amino acid sequences of kinases. In implementations where
amino acid sequences ol a variety of different types of
proteins are included in the protein sequence data 212
provided to the challenging component 206, the generating,
component 204 can generate amino acid sequences having
characteristics of proteins generally and may not correspond
to a particular type of protein.

The output produced by the data preprocessing 216 can
include structured sequences 218. The structured sequences
218 can include a matrix indicating amino acids associated
with various positions of a protein. In one or more examples,
the structured sequences 218 can include a matrix having
columns corresponding to different amino acids and rows
that correspond to structure-based positions of proteins. For
each element 1n the matrix, a 0 can be used to indicate the
absence of an amino acid at the corresponding position and
a 1 can be used to indicate the presence of an amino acid at
the corresponding position. In situations where a position
represents a gap 1n an amino acid sequence, the row asso-
ciated with the position can comprise zeroes lor each
column. The generated sequence(s) 210 can also be repre-
sented using a vector according to a same or similar number
scheme as used for the structured sequences 218. In one or
more 1llustrative examples, the structured sequences 218 and
the generated sequence(s) 210 can be encoded using a
method that may be referred to as a one-hot encoding
method.

After the generative adversarial network architecture 202
has undergone a training process, one or more trained
generating components 220 can be generated that can pro-
duce amino acid sequences of protemns. In one or more
examples, the training process for the generative adversarial
network architecture 202 can be complete after the
tfunction(s) implemented by the generating component 204
and the function(s) implemented by the challenging com-
ponent 206 converge. The convergence of a function can be
based on the movement of values of model parameters

5

10

15

20

25

30

35

40

45

50

55

60

65

12

toward specified values as protein sequences are generated
by the generating component 204 and feedback 1s obtained
from the challenging component 206. In various implemen-
tations, the training of the generative adversarial network
architecture 202 can be complete when the protein
sequences generated by the generating component 204 have
one or more specified characteristics. To illustrate, the amino
acid sequences generated by the generating component 204
can be analyzed by a software tool that can analyze amino
acid sequences to determine at least one of biophysical
properties of the amino acid sequences, structural features of
the amino acid sequences, or adherence to amino acid
sequences corresponding to one or more protein germlines.

The one or more trained generating components 220 can
included 1n an autoencoder traiming process 222. The auto-
encoder training process 222 can be implemented to train an
autoencoder 224 to generate amino acid sequences of pro-
teins. The autoencoder 224 can include an encoding com-
ponent 226 and a decoding component 228. The decoding
component 228 can include the one or more trained gener-
ating components 220. The encoding component 226 can
produce code data 230 that 1s a representation of input
obtained by the encoding component 226. The decoding
component 228 can generate output that corresponds to the
input obtained by the encoding component 226 based on the
code data 230.

The autoencoder training process 222 can be implemented
such that output generated by the decoding component 228
based on the code data 230 1s analyzed with respect to the
input obtained by the encoding component 226. During the
autoencoder training process 222, the input data obtained by
the encoding component 226 can include training data. In
one or more examples, the training data can include amino
acid sequences produced by the one or more trained gener-
ating components 220. The autoencoder training process
222 can be performed until the output produced by the
decoding component 228 based on the code data 230 has at
least a threshold amount of correspondence with the mput
obtained by the encoding component 226. In one or more
illustrative examples, the threshold amount of correspon-
dence between the output produced by the decoding com-
ponent 228 and the mput obtained by the encoding compo-
nent 226 can be related to an amount of similarity between
amino acid sequences generated by the decoding component
228 and amino acid sequences of training data obtained by
the encoding component 226. The amount of similarity
between amino acid sequences generated by the decoding
component 228 and amino acid sequences of training data
obtained by the encoding component 226 can indicate an
amount of identity between the mput sequences obtained by
the encoding component 226 and the output sequences
produced by the decoding component 228.

The autoencoder training process 222 can produce a
trained autoencoder 232. Although previous implementa-
tions of autoencoders include an encoding component hav-
ing a number of computational layers that are mirrored 1n the
decoding component, in implementations described herein,
the trained autoencoder 232 can include an encoder and a
decoder that have computational layers that are not mirrors
with respect to one another. The trained autoencoder 232 can
obtain one or more base sequences 234 and produce one or
more variant sequences 236 based on the one or more base
sequences 234. A base sequence 234 can include an amino
acid sequence of a base protein and the one or more variant
sequences 236 can include amino acid sequences of variant
proteins that differ 1n at least one position from the base
protein. In various examples, the trained autoencoder 232

US 11,948,664 B2

13

can include a trained encoding component that produces
code data based on a base sequence 234 and the code data
can be utilized by a decoding component of the trained
autoencoder 232 to produce the one or more variant
sequences 236.

FIG. 3 1s a diagram illustrating an example framework
300 to perform transier learning with respect to a {irst
generative adversarial network and produce a second gen-
erative adversarial network that can be used as a decoding
component of an autoencoder, in accordance with some
implementations. By implementing transier learning tech-
niques with respect to generative adversarial networks that
operate as decoding components of autoencoders, amino
acid sequences of variant proteins can be produced based on
at least one amino acid sequence of a base protein, where the
variant proteins have one or more specified structural fea-
tures and/or one or more specified biophysical properties.

The framework 300 can include a first generative adver-
sarial network training process 302. The first generative
adversarial network training process 302 can include train-
ing one or more {irst generative adversarial networks 304 to
produce amino acid sequences of proteins. The one or more
first generative adversarial networks 304 can 1nclude one or
more generating components and one or more challenging
components. In one or more examples, the first generative
adversarial network training process 302 can include train-
ing a first generative adversarial network 304 to produce
amino acid sequences of antibodies. The one or more
challenging components can analyze amino acid sequences
produced by the one or more generating components with
respect to training data that includes a number of amino acid
sequences of proteins. For example, the first generative
adversarial network training process 302 can train the one or
more {irst generative adversarial networks 304 based on first
protein sequence data 306. The first protein sequence data
306 can include amino acid sequences of a number of
proteins obtained from one or more data sources and stored
in one or more databases that are accessible to the one or
more first generative adversarial networks 304. The first
generative adversarial network tramning process 302 can
proceed until one or more criteria have been satisfied. The
one or more criteria can indicate one or more characteristics
of proteins that correspond to amino acid sequences of
proteins produced by the one or more first generative
adversarial networks 304. The one or more criteria can also
be related to the convergence of one or more functions
implemented by the one or more first generative adversarial
networks 304. In various examples, the amino acid
sequences produced by a first generative adversarial network
304 that has undergone the first generative adversarial
network training process 302 can have one or more struc-
tural features and/or one or more biophysical properties that
correspond to at least a portion of the structural features
and/or at least a portion of the biophysical properties of the
proteins that correspond to the amino acid sequences
included 1n the first protein sequence data 306.

After training one or more lirst generative adversarial
networks 304 according to the first generative adversarial
network training process 302, one or more {first traimned
generating components 308 can be produced that generate
amino acid sequences ol proteins. The one or more {first
trained generating components 308 can be used 1n a first
autoencoder training process 310. The first autoencoder
training process 310 can train a first autoencoder 312. The
first autoencoder 312 can include an encoding component
and a decoding component. The decoding component can
comprise a first trained generating component 308. The first

10

15

20

25

30

35

40

45

50

55

60

65

14

autoencoder 312 can be tramned using second protein
sequence data 314. The second protein sequence data 314
can include amino acid sequences of proteins that have been
obtained from one or more data sources. In one or more
examples, the second protein sequence data 314 can include
amino acid sequences generated by a first trained generating
component 308. In one or more illustrative examples, during
the first autoencoder traiming process 310, amino acid
sequences included 1n the second protein sequence data 314
can be obtamned by an encoding component of the first
autoencoder 312 and the encoding component can generate
code data that corresponds to a representation of the mput
amino acid sequences. The decoding component of the first
autoencoder 312 can generate an output amino acid
sequence based on the representation produced by the
encoding component. The first autoencoder training process
310 can proceed until one or more criteria for training the
first autoencoder 312 have been satisfied. The one or more
criteria used to determine when to stop the first autoencoder
training process 310 can be related to measures of similarity
between the amino acid sequences providing as training data
from the second protein sequence data 314 and the amino
acid sequences produced by the decoding component of the
first autoencoder 312 based on the code data generated by
the encoding component of the first autoencoder 312.

The first autoencoder training process 310 can produce a
first trained autoencoder 316. The first trained autoencoder
316 can include a first encoding component 318 that pro-
duces first code data 320. The first code data 320 can include
a representation of data provided as input to the first encod-
ing component 318. The first trained autoencoder 316 can
also include a first decoding component 322. In one or more
examples, the first decoding component 322 can i1nclude a
first trained generating component 308. In various examples,
computational layers of a first trained generating component
308 that 1s included 1n the first autoencoder 312 can remain
unchanged during the first autoencoder training process 310.
In these scenarios, the computational layers of the first
decoding component 322 correspond to the computational
layers of the first trained generating component 308 included
in the first autoencoder 312.

In one or more implementations, the first trained autoen-
coder 316 can obtain first base sequence data 324. The first
base sequence data 324 can correspond to amino acid
sequences ol one or more base proteins. The first trained
autoencoder 316 can generate first variant sequence data 326
based on the first base sequence data 324. The first variant
sequence data 326 can correspond to amino acid sequences
of proteins that are variants of the base protein related to the
first base sequence data 324. The variant proteins can have
an amino acid in at least one position that 1s different from
the amino acid 1n the same position of the base protein. In
one or more illustrative examples, the first encoding com-
ponent 318 can obtain the first base sequence data 324 and
generate the first code data 320. In these situations, the first
code data 320 can correspond to a representation of the first
base sequence data 324. In various examples, the first code
data 320 can correspond to a compressed version of the first
base sequence data 324. The first decoding component 322
can generate the first variant sequence data 326 based on the
first code data 320. In one or more examples, the first code
data 320 can be modified and the modified version of the
first code data 320 can be used by the first decoding
component 322 to generate the first varnant sequence data
326. In one or more additional examples, the first decoding
component 322 can generate the first variant sequence data

326 directly from the first code data 320.

US 11,948,664 B2

15

In addition to being included in the first autoencoder 312
and being part of the first autoencoder training process 310,
the one or more first trained generating components 308 can
also be included 1n a second generative adversarial network
training process 328. The second generative adversarial
network training process 328 can be used to train one or
more second generative adversarial networks 330. The one
or more second generative adversarial networks 330 can
include a generating component that comprises a first trained
generating component 308 and a challenging component.
The one or more second generative adversarial networks 330
can be trained according to third protein sequence data 332.
The third protein sequence data 332 can include amino acid
sequences ol a number of proteins. The number of proteins
corresponding to the amino acid sequences of the third
protein sequence data 332 can be different from the proteins
corresponding to the amino acid sequences of the first
protein sequence data 306 used in the first generative
adversarial network traiming process 302. In one or more
examples, the second generative adversarial network train-
ing process 328 can implement transfer learning techniques
that modity the first trained generating components 308. By
using a training dataset in the second generative adversarial
network training process 328 that 1s different from the
training dataset used in the first generative adversanal
network tramning process 302, the one or more second
generative adversarial networks 330 can produce amino acid
sequences that can have some general characteristics that
correspond to the amino acid sequences 1included 1n the first
protein sequence data 306 and that also have one or more
specified characteristics that correspond to features of the
proteins related to the amino acid sequences included 1n the
third protein sequence data 332.

In various implementations, the one or more {irst trained
generating components 308 can be further trained using the
third protein sequence data 332 as part of a transier learming,
process to produce one or more second trained generating,
components 334 1n a manner that 1s similar to the training of
the one or more first generative adversarial networks 304
that produced the one or more first tramned generating
components 308. In one or more examples, components of
the one or more second generative adversarial networks 330
can be trained to minimize at least one loss function.
Additionally, the second generative adversarial network
training process 328 used to produce the one or more second
trained generating components 334 can be complete after
one or more modified functions implemented by the one or
more second generative adversarial networks 330 converge.
In one or more further examples, the second generative
adversarial network training process 328 can be complete
based on an analysis of a software tool indicating that amino
acid sequences produced using the one or more second
generative adversarial networks 330 corresponds to one or
more specified criteria. The one or more specified criteria
can correspond to proteins associated with the amino acid
sequences produced by the generating component of a
second generative adversarial network 330 having at least
one of one or more structural features of 1nterest or one or
more biophysical properties of interest.

In one or more examples, the third protein sequence data
332 can include amino acid sequences of proteins that have
features that are diflerent from the features of the proteins
related to the first protein sequence data 306. In various
examples, the third protein sequence data 332 can include a
subset of the amino acid sequences included in the first
protein sequence data 306. In additional examples, the third
protein sequence data 332 can include a greater number of

10

15

20

25

30

35

40

45

50

55

60

65

16

a group of amino acid sequences having one or more
speciflied characteristics 1n relation to the number of amino
acid sequences having the one or more characteristics
included in the first protein sequence data 306. For example,
the first protein sequence data 306 can include amino acid
sequences of proteins having a variety of structural features.
To 1llustrate, the first protein sequence data 306 can include
a number of amino acid sequences of proteins having one or
more sizes of hydrophobic regions, a number of amino acid
sequences of proteins having one or more sizes of negatively
charged regions, a number of amino acid sequences of
proteins having one or more sizes of positively charged
regions, a number of amino acid sequences ol proteins one
or more sizes ol polar regions, one or more combinations
thereof, and the like. In one or more implementations, the
third protein sequence data 332 can include amino acid
sequences of proteins that have a greater number of amino
acid sequences of proteins having a subset of the properties
of the proteins included 1n the first protein sequence data
306, such as a greater number of amino acid sequences of
proteins that have hydrophobic regions with a specified
range ol sizes than the number of amino acid sequences
included 1n the first protein sequence data 306 that have the
hydrophobic regions with the specified range of sizes. In
these scenarios, the one or more second trained generating
components 334 can primarnily produce amino acid
sequences ol proteins having hydrophobic regions with the
specified range of sizes.

In one or more implementations, the amino acid
sequences 1ncluded 1n the third protein sequence data 332
can include a filtered set of amino acid sequences. For
example, a set of amino acid sequences can be evaluated
according to one or more criteria. In various examples, at
least one of one or more software tools, one or more
diagnostic tools, or one or more analytical instruments can
be used to 1dentily amino acid sequences included 1n the set
of amino acid sequences that correspond to the one or more
criteria. The amino acid sequences that satisiy the one or
more criteria can then be added to the third protein sequence
data 332. In one or more illustrative examples, a number of
amino acid sequences can be evaluated to 1dentily proteins
having at least one polar region for inclusion in the third
protein sequence data 332. In these scenarios, the amino acid
sequences that include at least one polar region can be used
to modily the one or more first trained generating compo-
nents 308 during the second generative adversarial network
training process 328 to produce the one or more second
trained generating components 334 that have at least a
threshold probability of generating amino acid sequences of
proteins having at least one polar region.

The first trained autoencoder 316 and the one or more
second trained generating components 334 can be used 1n a
second autoencoder training process 336. The second auto-
encoder training process 336 can train a second autoencoder
338 that includes the first encoding component 318 and a
decoding component that comprises a second trained gen-
erating component 334. The second autoencoder 338 can be
trained using fourth protein sequence data 340. The fourth
protein sequence data 340 can include amino acid sequences
of proteins that have been obtained from one or more data
sources. In one or more examples, the fourth protein
sequence data 340 can include amino acid sequences gen-
crated by at least one of the second trained generating
components 334.

In one or more implementations, during the second auto-
encoder tramning process 336, amino acid sequences
included 1n the fourth protein sequence data 340 can be

US 11,948,664 B2

17

obtained by an encoding component of the second autoen-
coder 338, such as the first encoding component 318, and the
encoding component can generate code data that corre-
sponds to a representation of the input amino acid
sequences. The decoding component of the second autoen-
coder 338, such as a second trained generating component
334, can generate an output amino acid sequence based on
the representation produced by the encoding component.
The second autoencoder training process 336 can proceed
until one or more criteria for training the second autoencoder
338 have been satisfied. The one or more criteria used to
determine when to stop the second autoencoder training
process 336 can be related to measures of similarity between
the amino acid sequences providing as training data from the
fourth protein sequence data 340 and the amino acid
sequences produced by the decoding component of the
second autoencoder 338 based on the code data generated by
the encoding component of the second autoencoder 338.

The second autoencoder training process 336 can produce
a second trained autoencoder 342. The second trained auto-
encoder 342 can include a second encoding component 344
that produces second code data 346. The second code data
346 can include a representation of data obtained as input to
the second encoding component 344. The second trained
autoencoder 342 can also include a second decoding com-
ponent 348. In one or more examples, the second decoding
component 348 can include a second trained generating
component 334. In various examples, computational layers
of a second trained generating component 334 that is
included in the second autoencoder 338 can remain
unchanged during the second autoencoder training process
336. In these scenarios, the computational layers of the
second decoding component 348 can correspond to the
computational layers of the second trained generating com-
ponent 334 included 1n the second autoencoder 338.

In one or more implementations, the second trained
autoencoder 342 can obtain second base sequence data 350.
The second base sequence data 350 can correspond to amino
acid sequences of one or more base proteins. The second
trained autoencoder 342 can generate second varant
sequence data 352 based on the second base sequence data
350. The second variant sequence data 352 can correspond
to amino acid sequences of proteins that are variants of the
base protein related to the second base sequence data 350.
The variant proteins can have an amino acid 1n at least one
position that 1s different from the amino acid in the same
position of the base protein. In one or more illustrative
examples, the second encoding component 344 can obtain
the second base sequence data 350 and generate the second
code data 346. In these situations, the second code data 346
can correspond to a representation of the second base
sequence data 350. In various examples, the second code
data 346 can correspond to a compressed version of the
second base sequence data 350. The second decoding com-
ponent 348 can generate the second variant sequence data
352 based on the second code data 346. In one or more
examples, the second code data 346 can be modified and the
modified version of the second code data 346 can be used by
the second decoding component 348 to generate the second
variant sequence data 352. In one or more additional
examples, the second decoding component 348 can generate
the second variant sequence data 352 directly from the
second code data 346.

As a result of using at least one second trained generating
component 334 as the second decoding component 348, the
variant proteins that correspond to the second variant
sequence data 352 can have characteristics that correspond

10

15

20

25

30

35

40

45

50

55

60

65

18

to those of the proteins related to the amino acid sequences
included in the third protein sequence data 332. That 1s, by
performing a second generative adversarial network traiming
process 328 using training data that corresponds to proteins
have one or more structural features of interest and/or one or
more biophysical properties of interest, the variant proteins
that correspond to the amino acid sequences of the second
variant sequence data 352 can also have at least a threshold
probability of having the one or more structural features of
interest and/or the one or more biophysical properties of
interest. Thus, the framework 400 can be implemented 1n
scenarios where variant proteins ol a base protein are to be
produced that have one or more structural features of interest
and/or one or more biophysical properties of interest. Addi-
tionally, by leveraging the learning that takes place to
produce the one or more first trained generating components
308 followed by the transfer learning using a more special-
1zed training dataset with respect to the second generative
adversarial network traiming process 328, the computing
resources used to generate the second variant sequence data
352 can be minimized and the accuracy of the characteristics
of interest for the variant proteins can be increased 1n
relation to previous techniques.

Further, although a single additional generative adver-
sarial network training process (e.g., the second generative
adversarial network training process 328) and a single
additional autoencoder training process (e.g., the second
autoencoder training process 336) are described with respect
to the illustrative example of FIG. 3, multiple additional
training processes for the generative adversarial networks
and autoencoders can be performed. In one or more
examples, the multiple structural features and/or multiple
biophysical properties can be of interest with respect to
variant proteins ol a base protein. In these scenarios, an
additional training dataset that includes amino acid
sequences of one or more of the structural features and/or
biophysical properties of interest can be used 1n one or more
additional transier learning processes to further train the
generating components of the generative adversarial net-
works. Modifications to the generating components of the
generative adversarial networks can result 1n modifications
to the encoding components and decoding components of
the autoencoders. Thus, with each additional training pro-
cess and subsequent modifications to the computational
layers of the generative adversarial network generating
components that operate as the decoding components for the
autoencoders and the modifications to the encoding compo-
nents, the characteristics of the proteins corresponding to the
amino acid sequences generated by the trained autoencoders
can be further modified.

Additionally, although the illustrative example of FIG. 3
indicates the implementation of transier learning techniques
by training the generating components ol one or more
generative adversarial networks with different datasets,
transter learning techniques can be implemented to produce
a second trained autoencoder from a first trained autoen-
coder by using a training dataset for the second autoencoder
training process that 1s not produced by a generating com-
ponent that has undergone a transier learning process. For
example, performing a transier learming process to generate
the second trained generating components 334 using the first
trained generating components 308 can be absent from the
framework 300. In these situations, the first trained autoen-
coder 316 can be part of the second autoencoder training
process 336. Continuing with this example, an additional
dataset, such as the third protein sequence data 332, can be
used as training data for the second autoencoder traiming

US 11,948,664 B2

19

process 336. Also 1n these scenarios, the second autoencoder
training process 336 can be different from the first autoen-
coder training process 310 because the computational layers
of the first decoding component 322 may not be held
constant during the second autoencoder training process
336. Thus, the computational layers of the first encoding
component 318 and the computational layers of the first
decoding component 322 can both be modified during the
second autoencoder training process 336.

FIG. 4 1s a diagram illustrating an example framework
400 to modily code data produced by an encoding compo-
nent of an autoencoder to generate amino acid sequences of
variants of a base protein, 1n accordance with some 1mple-
mentations. The framework 400 can include a trained auto-
encoder 402. The trained autoencoder 402 can be produced
using one or more implementations of autoencoder training,
processes described 1n relation to at least one of FIG. 1, FIG.
2, or FIG. 3. The trained autoencoder 402 can be imple-
mented using at least one of computer-readable 1nstructions,
logic, or circuitry.

The trained autoencoder 402 can include a trained encod-
ing component 404 that can produce code data 406 based on
input obtained by the trained encoding component 404. The
code data 406 can include a representation of the input
obtained by the trained encoding component 404. The code
data 406 can be produced by a number of computational
layers of the trained encoding component 404 based on input
obtained by the trained encoding component 404. In one or
more examples, the code data 406 can include a compressed
representation of the mput obtained by the trained encoding
component 404. The compressed representation correspond-
ing to the code data 406 can include less data than the mput
obtained by the traimned encoding component 404.

The trained autoencoder 402 can also 1include a decoding
component 408 The decoding component 408 can generate
output based on the code data 406. In one or more examples,
the output generated by the decoding component 408 based
on the code data 406 can have at least a threshold measure
of sitmilarity with respect to mput obtained by the trained
encoding component 404. In the illustrative example of FIG.
4, the decoding component 408 can include one or more
components of one or more generative adversarial networks
410. In various examples, the decoding component 408 can
include one or more generating components of the one or
more generative adversarial networks 410.

The tramned autoencoder 402 can perform code data
modification 412. The code data modification 412 can
include modifying one or more features of the code data 406
and providing the modified code data to the decoding
component 408. In these scenarios, the output produced by
the decoding component 408 can be based on an extent of
the modifications made to the code data 406. For example,
as the modifications to the code data 406 increase, difler-
ences between mput obtained by the trained encoding com-
ponent 404 and output generated by the decoding compo-
nent 408 can also increase.

In one or more implementations, the code data 406 can
include a number of numerical values. In various examples,
the numerical values can be included 1n a range of values. To
illustrative, numerical values of the code data 406 can be
included 1n a range from —1 to 1. In one or more additional
examples, the numerical values of the code data 406 can
include floating point numbers. In one or more illustrative
examples, the code data 406 can include a matrix of numeri-
cal values. For example, the code data 406 can include a
1x296 matrix. In situations where the code data 406 includes
a number ol numerical values, modifying one or more

10

15

20

25

30

35

40

45

50

55

60

65

20

features of the code data 406 can include modifying one or
more numerical values of the code data 406. Modifications
to numerical values of the code data 406 can include
modifying a number of the numerical values. Additionally,
modifications to the numerical values of the code data 406
can include moditying respective magnitudes of the 1ndi-
vidual numerical values. In one or more 1nstances, an extent
ol modification of the code data 406 can include at least one
of a number of numerical values of the code data 406 that are
modified or a magnitude that individual numerical values of
the code data 406 are modified.

Input to the trained autoencoder 402 can include base
sequence data 414 that corresponds to one or more amino
acid sequences ol base proteins, such as a base protein
sequence 416. The trained encoding component 404 can
produce code data 406 that corresponds to a representation
of the base sequence data 414. For example, the trained
encoding component 404 can generate code data 406 that 1s
a representation of the base protein sequence 416 and
includes less data than the base sequence data 414. Code
data modification 412 can take place that modifies one or
more numerical values of the code data 406 to produce
modified code data. The modified code data can be provided
to the decoding component 408 to produce output that
corresponds to amino acid sequences of variants of the base
protein sequence 416.

The output of the decoding component 408 based on one
or more modified versions of the code data 406 can include
variant sequence data 418. The code data modification 412
can include modifying a number of the numerical values of
the code data 406 by a respective amount. Individual
numerical values of the code data 406 can be modified by
different amounts. In one or more additional examples,
individual numerical values of the code data 406 can be
modified by a same amount. In the illustrative example of
FIG. 4, the code data modification 412 can include produc-
ing first modified code data 420, second modified code data
422, up to Nth modified code data 424. The first modified
code data 420 can include first modifications to numerical
values of the code data 406, the second modified code data
422 can include second modifications to numerical values of
the code data 406, and the Nth modified code data 424 can
include Nth modifications to numerical values of the code
data 406. The first modifications used to produce the first
modified code data 420 can include first modifications to a
number of numerical values of the code data 406 that are
different from the second modifications of the numerical
values of the code data 406 used to generate the second
modified code data 422 and different from the Nth modifi-
cations to numerical values of the code data 406 to produce
the Nth modified code data 424. Additionally, the second
modifications made to the code data 406 to produce the
second modified code data 422 can be different from the Nth
modifications made to the code data 406 to generate the Nth
modified code data 424.

The differences between the first modified code data 420,
the second modified code data 422, and the Nth modified
code data 424 can be related to the number of numerical
values of the code data 406 modified with respect to the first
modified code data 420, the second modified code data 422,
and the Nth modified code data 424. For example, a {irst
number of numerical values of the code data 406 can be
modified to produce the first modified code data 420 and a
second number of numerical values of the code data 406 can
be modified to produce the second modified code data 422,
where the second number of numerical values 1s diflerent
from the first number of numerical values. Further, a third

US 11,948,664 B2

21

number of numerical values of the code data 406 can be
modified to produce the Nth modified code data 424 that 1s
different from the first number of numerical values and the
second number of numerical values.

In one or more additional examples, the differences
between the first modified code data 420, the second modi-
fied code data 422, and the Nth modified code data 424 can
be related to the magnitude of changes to the numerical
values of the code data 406 with respect to the first modified
code data 420, the second modified code data 422, and the
Nth modified code data 424. The magnitude of changes to a
numerical value of the code data 406 can correspond to a
difference between an 1nitial numerical value and a modified
numerical value. The magnitude of changes to the numerical
values of the code data 406 that produce the first modified
code data 420 can be different from the magmtude of
changes to the numerical values of the code data 406 used
to produce the second modified code data 422 and can be
different from the magnitude of changes to the numerical
values of the code data 406 that produce the Nth modified
code data 424. Additionally, the magmtude of changes to the
numerical values of the code data 406 to produce the second
modified code data 422 can be different from the magnmitude
of changes to the numerical values of the code data 406 to
produce the Nth modified code data 424. The magnmitude of
changes to numerical values of the code data 406 can
correspond to at least one of a sum of magnitude changes to
numerical values of the code data 406, an absolute value of
the sum of magnitude changes to numerical values of the
code data 406, an average value of magnitude changes to
numerical values of the code data 406, or magnitude changes
to one or more 1ndividual numerical values of the code data
406.

The variant sequence data 418 generated by the decoding
component 408 can include a first variant protein sequence
426, a second variant protein sequence 428, up to an Nth
variant protein sequence 430. The decoding component 408
can generate the first variant protein sequence 426 based on
the first modified code data 420 and the decoding component
408 can generate the second variant protein sequence 428
based on the second modified code data 422. In addition, the
decoding component 408 can generate the Nth variant
protein sequence 430 based on the Nth modified code data
424. The first variant protein sequence 426 can include a first
number of differences between nitial amino acids located at
one or more {irst positions of the base protein sequence 416
and first modified amino acids located at the one or more
first positions of the first variant protein sequence 426. The
second variant protein sequence 428 can include a second
number of differences between 1nitial amino acids located at
one or more second positions of the base protein sequence
416 and second modified amino acids located at the one or
more second positions of the second wvariant protein
sequence 428. In addition, the Nth variant protein sequence
430 can include a third number of differences between 1nitial
amino acids located at one or more third positions of the
base protein sequence 416 and third modified amino acids
located at the one or more third positions of the Nth variant
protein sequence 430.

The differences between the base protein sequence 416
and the first variant protein sequence 426 can be based on
differences between the code data 406 and the first modified
code data 420. Additionally, differences between the base
protein sequence 416 and the second variant protein
sequence 428 can be based on differences between the code
data 406 and the second modified code data 422. Further,

differences between the base protein sequence 416 and the

10

15

20

25

30

35

40

45

50

55

60

65

22

Nth variant protein sequence 430 can be based on differ-
ences between the code data 406 and the Nth modified code
data 424. In one or more examples, a first amount of
differences between numerical values of the code data 406
and the first modified code data 420 can correspond to {first
differences of amino acids at a first number of positions of
the base protein sequence 416 in relation to amino acids at
the first number of positions of the first variant protein
sequence 426. In one or more additional examples, a second
amount of differences between numerical values of the code
data 406 and the second modified code data 422 can corre-
spond to second differences of amino acids at a second
number of positions of the base protein sequence 416 in
relation to amino acids at the second number of positions of
the second varniant protein sequence 428. In one or more
illustrative examples, the first amount of differences
between the numerical values of the code data 406 and the
first modified code data 420 can be greater than the second
amount of differences between the numerical values of the
code data 406 and the second modified code data 422. In
these scenarios, the first differences of amino acids at the
first number of positions of the base protein sequence 416 1n
relation to the amino acids at the first number of positions of
the first variant protein sequence 426 can be greater than the
second differences of amino acids at the second number of
positions of the base protein sequence 416 1n relation to the
amino acids at the second number of positions of the second
variant protein sequence 428. The first amount of differences
between the code data 406 and the first modified code data
420 can be greater than the second amount of differences
between the code data 406 and the second modified code
data 422 based on a number of numerical values of the code
data 406 that have been changed with respect to the first
modified code data 420 and the second modified code data
422 and/or a magnmitude of changes to one or more numerical
values of the code data 406 with respect to the first modified
code data 420 and the second modified code data 422.

In one or more examples, the base protein sequence 416
and the variant protein sequences 426, 428, 430 can include
at least a portion of an amino acid sequence of a base
protein. In one or more 1illustrative examples, the base
protein sequence 416 and the variant protein sequences 426,
428, 430 can include an amino acid sequence of at least a
portion of an antibody. For example, the base protein
sequence 416 and the variant protein sequences 426, 428,
430 can include at least a portion of a heavy chain of an
antibody or at least a portion of a light chain of an antibody.
In one or more additional examples, the base protein
sequence 416 and the variant protein sequences 426, 428,
430 can include at least a portion of a variable region of a
light chain or at least a portion of a variable region of a
heavy chain of an antibody. The base protein sequence 416
and the varniant protein sequences 426, 428, 430 can also
include at least a portion of a constant region of a light chain
or at least a portion of a constant region of a heavy chain of
an antibody. In one or more further 1llustrative examples, the
base protein sequence 416 and the variant protein sequences
426, 428, 430 can include at least a portion of a comple-
mentarity determining region (CDR) of an antibody. In
situations where the base protein sequence 416 and the
variant protein sequences 426, 428, 430 include a portion of
a sequence of a protein, additional amino acids can subse-
quently be added to the variant protein sequences 426, 428,
430. To 1illustrate, 1n scenarios where the variant protein
sequences 426, 428, 430 are amino acid sequences of at least
a portion of a CDR of an antibody, additional amino acids
can be added to the variant protein sequences 426, 428, 430

US 11,948,664 B2

23

to produce one or more portions of an antibody sequence,
such as a heavy chain or a light chain of an antibody, or to
produce a greater amount of antibody sequences that include
one or more heavy chains, one or more light chains, and one
or more hinge regions.

FIGS. 5 and 6 illustrate example processes for generating
amino acid sequences of proteins using machine learning
techniques. The example processes are 1llustrated as collec-
tions of blocks 1n logical flow graphs, which represent
sequences of operations that can be implemented 1n hard-
ware, software, or a combination thereof. The blocks are
referenced by numbers. In the context of software, the
blocks represent computer-executable instructions stored on
one or more computer-readable media that, when executed
by one or more processing units (such as hardware micro-
processors), perform the recited operations. Generally, com-
puter-executable structions include routines, programs,
objects, components, data structures, and the like that per-
form particular functions or implement particular data types.
The order in which the operations are described 1s not
intended to be construed as a limitation, and any number of
the described blocks can be combined 1n any order and/or in
parallel to implement the process.

FIG. 5 1s a flow diagram 1llustrating an example process
500 to modily code data produced by an encoding compo-
nent of an autoencoder to produce amino acid sequences of
variants of a base protein using one or more components of
a generative adversarial network as a decoding component
of the autoencoder, in accordance with some 1mplementa-
tions. The process 300 can include, at 502, generating code
data by an encoding component of an autoencoder that
represents a first amino acid sequence of a base protein. The
code data can correspond to a representation of the {first
amino acid sequence. In one or more examples, the code
data can include a plurality of numerical values. In one or
more illustrative examples, the code data can include a
1x296 matrix.

In addition, the process 500 can include, at 504, modify-
ing the code data to produce modified code data. The code
data can be modified by modilying one or more numerical
values of the code data. In various examples, the numerical
values of the code data can be modified by changing by
increasing or decreasing a respective numerical value by an
amount. At 506, the process 500 can include providing the
modified code data to a decoding component of the auto-
encoder. The decoding component can include a generating
component of a generative adversarial network.

Further, at 508, the process 500 can 1nclude generating,
using the generating component, a second amino acid
sequence ol a variant protein based on the modified code
data. In one or more examples, the second amino acid
sequence of the variant protein can include a same number
of amino acids as the first amino acid sequence of the base
protein and have one or more modifications of an amino acid
at one or more positions with respect to the amino acids of
the first sequence of the base protein at the same one or more
positions. In one or more additional examples, the second
amino acid sequence of the variant protein can have a
different number of amino acids than the first amino acid
sequence ol the base proteimn. In various examples, the
second amino acid sequence of the variant protein can have
at least a threshold amount of sequence 1dentity with the first
amino acid sequence of the base protein. The amount of
differences between the first amino acid sequence of the base
protein and the second amino acid sequence of the variant
protein can be based on a number of modifications made to
the modified code data with respect to the code data.

10

15

20

25

30

35

40

45

50

55

60

65

24

In one or more examples, an itial version of the gener-
ating component can be previously tramned to generate
amino acid sequences of proteins that have one or more
structural features of interest and/or one or more biophysical
properties of interest. In these scenarios, the generating
component can be previously trained to produce amino acid
sequences having a first amount of amino acid sequences
that correspond to proteins having the one or more structural
features of interest and/or the one or more biophysical
properties ol interest. The generating component can be
turther trained using diflerent training data to produce amino
acid sequences having a second amount of amino acid
sequences that correspond to proteins having the one or
more structural features of interest and/or the one or more
biophysical properties of interest. Accordingly, the version
of the generating component that has been further trained
using different training data can produce a number of amino
acid sequences that has a greater proportion of amino acid
sequences of proteins that correspond to the one or more
structural features of interest and/or the one or more bio-
physical properties of interest than the proteins correspond-
ing to the amino acid sequences produced by the previous
version of the generating component. In various examples,
the probability that the further trained version of the gener-
ating component generates amino acid sequences of proteins
having the one or more structural features of interest and/or
the one or more biophysical properties of interest can be
greater than a probability that the imitial version of the
generating component can generate amino acid sequences of
proteins having the one or more structural features of
interest and/or the one or more biophysical properties of
interest.

Additionally, an autoencoder that includes a further
trained version of the generating component can have a
greater probability of producing amino acid sequences hav-
ing the one or more structural features of interest and/or the
one or more biophysical properties of interest than an
autoencoder that includes an initial version of the generating
component. In one or more examples, an autoencoder that
includes a further trained version of the generating compo-
nent can produce a higher proportion of amino acid
sequences corresponding to proteins having the one or more
structural features of interest and/or the one or more bio-
physical properties of interest than an autoencoder that
includes an 1nitial version of the generating component.

FIG. 6 15 a flow diagram illustrating an example process
600 to generate an autoencoder that produces amino acid
sequences of variants using one or more components of a
generative adversarial network as a decoding component of
the autoencoder, 1n accordance with some implementations.
At 602, the process 600 can include performing a first
training process using a first training dataset including a first
plurality of amino acids sequences of proteins to produce a
trained generating component of a generative adversarial
network. The first training process can produce a trained
generating component that produces amino acid sequences
ol proteins having a first group of one or more structural
features and/or a first group of one or more biophysical
properties. The first group of one or more structural features
and/or the first group of one or more biophysical properties
can correspond to characteristics of the proteins associated
with the plurality of first amino acid sequences included in
the first training dataset.

The process 600 can also include, at 604, producing a
second tramning dataset that includes a second plurality of
amino acid sequences of proteins. In one or more examples,
the second training dataset can be produced using the traimned

US 11,948,664 B2

25

generating component. In addition, at 606, the process 600
can include generating an autoencoder that includes an
encoding component and a decoding component. The
decoding component can comprise the trained generating
component of the generative adversarial network. At 608,
the process 600 can include performing a second traiming,
process using the second training dataset to generate a
trained version of the autoencoder. The trained version of the
autoencoder can include a trained version of the encoding
component and the decoding component of the trained
version of the autoencoder can include the trained generat-
ing component. During the training process, the computa-
tional layers of the encoding component can be modified
based on differences between the amino acid sequences
included 1n the second training dataset and the amino acid
sequences produced by the decoding component. The dif-
ferences between the amino acid sequences included 1n the
second training dataset and the amino acid sequences pro-
duced by the decoding component can correspond to a
measure ol i1dentity between the amino acid sequences
included 1n the second training dataset in relation to respec-
tive amino acid sequences produced by the decoding com-
ponent. In various examples, the computational layers of the
decoding component can be held constant during the second
training process. The encoding component of the trained
version ol the autoencoder can produce code data based on
input obtained by the encoding component. The code data
can include a representation of the input obtained by the
encoding component. In addition, the decoding component
can produce output based on the code data.

Further, at 610, the process 600 can include providing
base sequence data to the trained version of the autoencoder
that corresponds to an amino acid sequence of a base
protein. The encoding component of the trained autoencoder
can generate code data based on the base sequence data that
corresponds to a representation of the base sequence data.
For example, the code data can include a compressed
version of the base sequence data. In one or more examples,
the code data can include one or more numerical values. The
process 600 can include, at 612, generating an amino acid
sequence ol a varniant protein based on the amino acid
sequence of the base protein. In one or more examples, the
decoding component can generate the amino acid sequence
of the varniant protein based on code data generated by the
encoding component based on the amino acid sequence of
the base protein. The amino acid sequence of the variant
protein can have an amount of similarity with respect to the
amino acid sequence of the base protein and an amount of
difference with respect to the amino acid sequence of the
base protein.

In one or more illustrative examples, the code data
generated by the encoding component can be modified and
the decoding component can produce the amino acid
sequence of the variant protein based on the modified code
data. In various examples, the code data can be modified by
changing one or more numerical values of the code data
from an 1mitial value to a modified value. In one or more
implementations, an amount of difference between the
amino acid sequence of the base protein and the amino acid
sequence of the variant protein can correspond to an extent
of changes to the numerical values of the code data. The
extent of changes to the numerical values of the code data
can correspond to a number of the numerical values of the
initial version of the code data that are modified with respect
to a modified version of the code data. The extent of changes
to the numerical values of the code data can also correspond

10

15

20

25

30

35

40

45

50

55

60

65

26

to the magnitude of changes to the numerical values of the
initial version of the code data with respect to the modified
version of the code data.

In one or more additional examples, the amino acid
sequences of a number of variant proteins can be produced
using the same numerical values of the code data. For
example, a first amino acid sequence of a first variant protein
can be produced by the trained version of the autoencoder
based on numerical values of the code data and a second
amino acid sequence of a second variant protein can be
produced by the trained version of the autoencoder based on
the same numerical values of the code data. In these sce-
narios, the trained version of the autoencoder can be pro-
duced by providing a traiming dataset of amino acid
sequences to the encoding component that are unable to be
reproduced to a threshold amount of sequence identity by
the decoding component based on code data generated by
the encoding component according to the amino acid
sequences of the training dataset. In one or more 1llustrative

examples, the threshold amount of sequence 1dentity 1n these
instances can be at least 95%, at least 97%, at least 98%, at
least 99%, or at least 99.5%.

FIG. 7 illustrates a diagrammatic representation of a
machine 700 in the form of a computer system within which
a set of imstructions may be executed for causing the
machine 700 to perform any one or more of the method-
ologies discussed herein, according to an example, accord-
ing to an example embodiment. Specifically, FIG. 7 shows
a diagrammatic representation of the machine 700 1n the
example form of a computer system, within which instruc-
tions 702 (e.g., software, a program, an application, an
applet, an app, or other executable code) for causing the
machine 700 to perform any one or more of the method-
ologies discussed herein may be executed. For example, the
instructions 702 may cause the machine 700 to implement
the frameworks 100, 200, 300, 400, described with respect
to FIGS. 1, 2, 3, and 4, respectively, and to execute the
methods 500, 600 described with respect to FIGS. 5 and 6,
respectively.

The 1instructions 702 transform the general, non-pro-
grammed machine 700 into a particular machine 700 pro-
grammed to carry out the described and 1llustrated functions
in the manner described. In alternative embodiments, the
machine 700 operates as a standalone device or may be
coupled (e.g., networked) to other machines. In a networked
deployment, the machine 700 may operate 1n the capacity of
a server machine or a client machine in a server-client
network environment, or as a peer machine 1n a peer-to-peer
(or distributed) network environment. The machine 700 may
comprise, but not be limited to, a server computer, a client
computer, a personal computer (PC), a tablet computer, a
laptop computer, a netbook, a set-top box (STB), a personal
digital assistant (PDA), an entertainment media system, a
cellular telephone, a smart phone, a mobile device, a wear-
able device (e.g., a smart watch), a smart home device (e.g.,
a smart appliance), other smart devices, a web appliance, a
network router, a network switch, a network bridge, or any
machine capable of executing the instructions 702, sequen-
tially or otherwise, that specily actions to be taken by the
machine 700. Further, while only a single machine 700 1s
illustrated, the term “machine” shall also be taken to include
a collection of machines 700 that individually or jointly
execute the mstructions 702 to perform any one or more of
the methodologies discussed herein.

Examples of machine 700 can include logic, one or more
components, circuits (e.g., modules), or mechanisms. Cir-
cuits are tangible entities configured to perform certain

US 11,948,664 B2

27

operations. In an example, circuits can be arranged (e.g.,
internally or with respect to external entities such as other
circuits) 1n a specified manner. In an example, one or more
computer systems (e.g., a standalone, client or server com-
puter system) or one or more hardware processors (proces-
sors) can be configured by software (e.g., instructions, an
application portion, or an application) as a circuit that
operates to perform certain operations as described herein.
In an example, the software can reside (1) on a non-
transitory machine readable medium or (2) 1n a transmission
signal. In an example, the software, when executed by the
underlying hardware of the circuit, causes the circuit to
perform the certain operations.

In an example, a circuit can be implemented mechanically
or electronically. For example, a circuit can comprise dedi-
cated circuitry or logic that i1s specifically configured to
perform one or more techniques such as discussed above,
such as including a special-purpose processor, a field pro-
grammable gate array (FPGA) or an application-specific
integrated circuit (ASIC). In an example, a circuit can
comprise programmable logic (e.g., circuitry, as encom-
passed within a general-purpose processor or other program-
mable processor) that can be temporarily configured (e.g.,
by software) to perform the certain operations. It will be
appreciated that the decision to implement a circuit
mechanically (e.g., in dedicated and permanently configured
circuitry), or 1n temporarily configured circuitry (e.g., con-
figured by soiftware) can be driven by cost and time con-
siderations.

Accordingly, the term “circuit” 1s understood to encom-

pass a tangible entity, be that an enftity that i1s physically
constructed, permanently configured (e.g., hardwired), or
temporarily (e.g., ftransitorily) configured (e.g., pro-
grammed) to operate 1n a specified manner or to perform
specified operations. In an example, given a plurality of
temporarily configured circuits, each of the circuits need not
be configured or mstantiated at any one instance 1n time. For
example, where the circuits comprise a general-purpose
processor configured via software, the general-purpose pro-
cessor can be configured as respective different circuits at
different times. Software can accordingly configure a pro-
cessor, for example, to constitute a particular circuit at one
instance of time and to constitute a different circuit at a
different instance of time.
In an example, circuits can provide information to, and
receive mformation from, other circuits. In this example, the
circuits can be regarded as being communicatively coupled
to one or more other circuits. Where multiple of such circuits
exist contemporaneously, communications can be achieved
through signal transmission (e.g., over appropriate circuits
and buses) that connect the circuits. In embodiments 1n
which multiple circuits are configured or instantiated at
different times, communications between such circuits can
be achieved, for example, through the storage and retrieval
ol information in memory structures to which the multiple
circuits have access. For example, one circuit can perform
an operation and store the output of that operation 1 a
memory device to which 1t 1s communicatively coupled. A
turther circuit can then, at a later time, access the memory
device to retrieve and process the stored output. In an
example, circuits can be configured to initiate or receive
communications with mput or output devices and can oper-
ate on a resource (e.g., a collection of information).

The various operations of method examples described
herein can be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by soft-
ware) or permanently configured to perform the relevant

10

15

20

25

30

35

40

45

50

55

60

65

28

operations. Whether temporarily or permanently configured,
such processors can constitute processor-implemented cir-
cuits that operate to perform one or more operations or
functions. In an example, the circuits referred to herein can
comprise processor-implemented circuits.

Similarly, the methods described herein can be at least
partially processor implemented. For example, at least some
of the operations of a method can be performed by one or
processors or processor-implemented circuits. The pertfor-
mance of certain of the operations can be distributed among,
the one or more processors, not only residing within a single
machine, but deployed across a number of machines. In an
example, the processor or processors can be located in a
single location (e.g., within a home environment, an office
environment or as a server farm), while 1n other examples
the processors can be distributed across a number of loca-
tions.

The one or more processors can also operate to support
performance of the relevant operations 1n a “cloud comput-
ing~ environment or as a “software as a service”

(SaaS). For example, at least some of the operations can
be performed by a group of computers (as examples of
machines including processors), with these operations being

accessible via a network (e.g., the Internet) and via one or
more appropriate interfaces (e.g., Application Program
Intertaces (APIs).)

Example embodiments (e.g., apparatus, systems, or meth-
ods) can be implemented in digital electronic circuitry, 1n
computer hardware, 1in firmware, in software, or 1n any
combination thereol. Example embodiments can be imple-
mented using a computer program product (e.g., a computer
program, tangibly embodied 1n an information carrier or in
a machine readable medium, for execution by, or to control
the operation of, data processing apparatus such as a pro-
grammable processor, a computer, or multiple computers).

A computer program can be written mm any form of
programming language, including compiled or interpreted
languages, and 1t can be deployed in any form, including as
a stand-alone program or as a software module, subroutine,
or other unit suitable for use in a computing environment. A
computer program can be deployed to be executed on one
computer or on multiple computers at one site or distributed
across multiple sites and interconnected by a communication
network.

In an example, operations can be performed by one or
more programmable processors executing a computer pro-
gram to perform functions by operating on mput data and
generating output. Examples of method operations can also
be performed by, and example apparatus can be i1mple-
mented as, special purpose logic circuitry (e.g., a field
programmable gate array (FPGA) or an application-specific
integrated circuit (ASIC)).

The computing system can include clients and servers. A
client and server are generally remote from each other and
generally interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In embodiments
deploying a programmable computing system, 1t will be
appreciated that both hardware and software architectures
require consideration. Specifically, it will be appreciated that
the choice of whether to implement certain functionality 1n
permanently configured hardware (e.g., an ASIC), 1n tem-
porarily configured hardware (e.g., a combination of soft-
ware and a programmable processor), or a combination of
permanently and temporarily configured hardware can be a

US 11,948,664 B2

29

design choice. Below are set out hardware (e.g., machine
700) and software architectures that can be deployed in
example embodiments.

In an example, the machine 700 can operate as a stand-
alone device or the machine 700 can be connected (e.g.,
networked) to other machines.

In a networked deployment, the machine 700 can operate
in the capacity of erther a server or a client machine 1n
server-client network environments. In an example, machine
700 can act as a peer machine in peer-to-peer (or other
distributed) network environments. The machine 700 can be
a personal computer (PC), a tablet PC, a set-top box (STB),
a Personal Digital Assistant (PDA), a mobile telephone, a
web appliance, a network router, switch or bridge, or any
machine capable of executing instructions (sequential or
otherwise) specilying actions to be taken (e.g., performed)
by the machine 700. Further, while only a single machine
700 1s 1llustrated, the term “computing device™ shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.

Example machine 700 can include a processor 704 (e.g.,
a central processing unit CPU), a graphics processing unit
(GPU) or both), a main memory 706 and a static memory
708, some or all of which can communicate with each other
via a bus 710. The machine 700 can further include a display
unit 712, an alphanumeric mput device 714 (e.g., a key-
board), and a user intertace (Ul) navigation device 716 (e.g.,
a mouse). In an example, the display umt 712, input device
714 and UI navigation device 716 can be a touch screen
display. The machine 700 can additionally 1include a storage
device (e.g., drive unit) 718, a signal generation device 720
(e.g., a speaker), a network interface device 722, and one or
more sensors 724, such as a global positioning system (GPS)
sensor, compass, accelerometer, or another sensor.

The storage device 718 can include a machine readable
medium 726 on which 1s stored one or more sets of data
structures or mstructions 702 (e.g., software) embodying or
utilized by any one or more of the methodologies or func-
tions described herein. The instructions 702 can also reside,
completely or at least partially, within the main memory 706,
within static memory 708, or within the processor 704
during execution thereof by the machine 700. In an example,
one or any combination ol the processor 704, the main
memory 706, the static memory 708, or the storage device
718 can constitute machine readable media.

While the machine readable medium 726 1s illustrated as
a single medium, the term “machine readable medium™ can
include a single medium or multiple media (e.g., a central-
1zed or distributed database, and/or associated caches and
servers) that configured to store the one or more instructions
702. The term “machine readable medium” can also be taken
to include any tangible medium that i1s capable of storing,
encoding, or carrying instructions for execution by the
machine and that cause the machine to perform any one or
more of the methodologies of the present disclosure or that
1s capable of storing, encoding or carrying data structures
utilized by or associated with such instructions. The term
“machine readable medium™ can accordingly be taken to
include, but not be limited to, solid-state memories, and
optical and magnetic media. Specific examples of machine-
readable media can include non-volatile memory, including,
by way of example, semiconductor memory devices (e.g.,

Electrically Programmable Read-Only Memory
(EPROM), Electrically Erasable Programmable Read-

Only Memory (EEPROM)) and flash memory devices;

10

15

20

25

30

35

40

45

50

55

60

65

30

magnetic disks such as internal hard disks and removable
disks; magneto-optical disks; and CD-ROM and DVD-

ROM disks.

The instructions 702 can further be transmitted or
received over a communications network 728 using a trans-
mission medium via the network interface device 722 uti-
lizing any one of a number of transfer protocols (e.g., frame
relay, IP, TCP, UDP, HT'TP, etc.). Example communication
networks can include a local area network (LAN), a wide
area network (WAN), a packet data network (e.g., the
Internet), mobile telephone networks (e.g., cellular net-
works), Plain Old Telephone (POTS) networks, and wireless
data networks (e.g., IEEE 802.11 standards family known as
Wi-Fi®, IEEE 802.16 standards family known as WiMax®),
peer-to-peer (P2P) networks, among others. The term “trans-
mission medium™ shall be taken to include any intangible
medium that 1s capable of storing, encoding or carrying
instructions for execution by the machine, and includes
digital or analog communications signals or other intangible
medium to facilitate communication of such software.

As used herein, a “component” in this context, refers to at
least one of a device, physical entity, group of computer-
readable 1nstructions, or logic having boundaries defined by
function or subroutine calls, branch points, APIs, or other
technologies that provide for the partitioning or modular-
1zation of particular processing or control functions. Com-
ponents may be combined via their interfaces with other
components to carry out a machine process. A component
may be a packaged functional hardware unit designed for
use with other components and a part of a program that
usually performs a particular function of related functions.
Components may constitute either software components
(e.g., code embodied on a machine-readable medium) or
hardware components. A “hardware component” 1s a tan-
gible unit capable of performing certain operations and may
be configured or arranged in a certain physical manner. In
various example implementations, one or more computer
systems (e.g., a standalone computer system, a client com-
puter system, or a server computer system) or one or more
hardware components of a computer system (e.g., a proces-
sOr or a group of processors) may be configured by software
(e.g., an application or application portion) as a hardware
component that operates to perform certain operations as
described herein.

A numbered non-limiting list of aspects of the present
subject matter 1s presented below.

Aspect 1. A method comprising: performing, by a com-
puting system including one or more computing
devices having one or more processors and memory, a
first training process using a first training dataset to
produce a trained generating component of a generative
adversarial network, the first training dataset including
a first plurality of amino acid sequences of first pro-
teins; producing, by the computing system, a second
training dataset including a second plurality of amino
acid sequences of second proteins, generating, by the
computing system, an autoencoder that includes an
encoding component and a decoding component, the
decoding component comprising the trained generating
component of the generative adversarial network; per-
forming, by the computing system, a second training
process using the second training dataset to generate a
trained version of the autoencoder, the trained version
of the autoencoder including a trained version of the
encoding component that generates code data, the code
data representing one or more amino acid sequences of
the second training dataset; providing, by the comput-

US 11,948,664 B2

31

ing system, base sequence data to the trained version of
the autoencoder, the base sequence data including a
first amino acid sequence of a base protein; and gen-
crating, by the computing system, variant sequence
data that includes a second amino acid sequence of a
variant protein based on the code data, the second
amino acid sequence having an amount of similarity
with the respect to the first amino acid sequence and an
amount of difference with respect to the first amino acid
sequence.

Aspect 2. The method of aspect 1, further comprising:

moditying, by the computing system, the code data to
produce modified code data, wherein the modified code
data 1s used by the decoding component to generate the
second amino acid sequence.

Aspect 3. The method of aspect 1 or 2, wherein the second

amino acid sequence has at least a threshold amount of
identity with respect to the first amino acid sequence.

Aspect 4. The method of any one of aspects 1-3, wherein

the second training dataset 1s produced by the trained
generating component.

Aspect 5. The method of claim any one of aspects 1-4,

further comprising: determining, by the computing
system and during the first training process, code data
by the encoding component of the autoencoder based
on an amino acid sequence of the first training dataset
obtained by the encoding component; generating, by
the computing system and during the first training
process, an additional amino acid sequence by the
decoding component; determining, by the computing
system and during the first training process, a measure
of differences between the amino acid sequence and the
additional amino acid sequence; and modifying, by the
computing system and during the first training process,
one or more computational layers of the encoding
component based on the measure of diflerences
between the amino acid sequence and the additional
amino acid sequence.

Aspect 6. The method of any one of aspects 1-5, wherein

first computational layers of the decoding component
are unchanged during the first training process and
second computational layers of the encoding compo-
nent are modified during the first training process.

Aspect 7. The method of any one of aspects 1-6, further

comprising: obtaining, by the computing system, a
third training dataset that includes a third plurality of
amino acid sequences of third proteins, the third pro-
teins including a greater number of proteins having at
least one of a structural feature or a biophysical prop-
erty than the first plurality of first proteins included 1n
the first training dataset; performing, by the computing
system, a third traiming process for a generative adver-
sarial network that includes the trained generating
component; and producing, by the computing system,
an additional trained generating component 1n relation
to the third training process using the third training
dataset, the additional trained generating component
generating a plurality of amino acid sequences of a first
group of proteins having a greater proportion of pro-
teins including at least one of the structural feature or
the biophysical property than a second group of pro-
teins corresponding to additional amino acid sequences
generated by the trained generating component.

Aspect 8. The method of aspect 7, further comprising:

generating, by the computing system, and additional
autoencoder that includes the trained version of the
encoding component and an additional decoding com-

10

15

20

25

30

35

40

45

50

55

60

65

32

ponent that includes the additional trained generating
component; and performing, by the computing system,
a fourth training process to generate an additional
trained version of the autoencoder including an addi-
tional trained version of the encoding component using
a Tourth training dataset that includes a fourth plurality
of amino acid sequences of fourth proteins.

Aspect 9. The method of aspect 8, further comprising:

providing, by the computing system, additional base
sequence data to the additional trained version of the
encoding component, the additional base sequence data
corresponding to an additional amino acid sequence of
an additional base protein; generating, by the comput-
ing system and using the additional trained version of
the encoding component, additional code data based on
the additional base sequence data; and generating, by
the computing system and using the additional decod-
ing component, additional variant sequence data that
includes a plurality of additional amino acid sequences
that correspond to a plurality of additional variant
proteins of the additional base protein, the plurality of
additional variant proteins having at least a threshold
probability of including at least one of the structural
feature or the biophysical property.

Aspect 10. The method of any one of aspects 1-9, wherein

the base protemn includes at least a portion of an
antibody.

Aspect 11. The method of any one of aspects 1-10,

wherein: the variant sequence data includes a plurality
of additional amino acid sequences of a plurality of
additional proteins, individual additional amino acid
sequences ol the plurality of additional amino acid
sequences having at least an additional amount of

similarity with respect to the first amino acid sequence
and an additional amount of difference with respect to
the first amino acid sequence; and the method further
comprising: generating, by the computing system, a
first additional amino acid sequence of the plurality of
additional amino acid sequences using numerical val-
ues of the code data; and generating, by the computing
system, a second additional amino acid sequence of the
plurality of additional amino acid sequences using the
numerical values of the code data, the second addi-
tional amino acid sequence being different from the
first additional amino acid sequence.

Aspect 12. A computing system comprising: one or more

hardware processors; and one or more non-transitory
computer readable media storing computer-executable
instructions that, when executed by the one or more
hardware processors, cause the one or more processor
to perform operations comprising: performing a first
training process using a first training dataset to produce
a trained generating component of a generative adver-
sarial network, the first training dataset including a first
plurality of amino acid sequences of first proteins;
producing a second training dataset including a second
plurality of amino acid sequences of second proteins,
generating an autoencoder that includes an encoding
component and a decoding component, the decoding
component comprising the trained generating compo-
nent of the generative adversarial network; performing
a second training process using the second training data
set to generate a trained version of the autoencoder, the
trained version of the autoencoder including a tramned
version of the encoding component that generates code
data, the code data representing one or more amino acid
sequences of the second traiming dataset; providing

US 11,948,664 B2

33

base sequence data to the trained version of the auto-
encoder, the base sequence data 1including a first amino
acid sequence of a base protein; and generating, by the
computing system, variant sequence data that includes

and modifying, during the first training process, one or
more computational layers of the encoding component

34

ponent generating a plurality of amino acid sequences
of a first group of proteins having a greater proportion
of proteimns including at least one of the structural
feature or the biophysical property than a second group

a second amino acid sequence of a variant protein 5 of proteins corresponding to additional amino acid
based on the code data, the second amino acid sequence sequences generated by the trained generating compo-
having an amount of similarity with the respect to the nent.

first amino acid sequence and an amount of diflerence Aspect 19. The computing system of aspect 18, wherein
with respect to the first amino acid sequence. the one or more non-transitory computer readable

Aspect 13. The computing system of aspect 12, wherein 10 media store additional computer-executable instruc-
the one or more non-transitory computer readable tions that, when executed by the one or more hardware
media store additional computer-executable instruc- processors, cause the one or more processor to perform
tions that, when executed by the one or more hardware additional operations comprising: generating an addi-
processors, cause the one or more processor to perform tional autoencoder that includes the trained version of
additional operations comprising: modifying the code 15 the encoding component and an additional decoding
data to produce modified code data, wherein the modi- component that includes the additional trained gener-
fied code data 1s used by the decoding component to ating component; and performing a fourth training
generate the second amino acid sequence. process to generate an additional trained version of the

Aspect 14. The computing system of aspect 12 or 13, autoencoder 1mcluding an additional trained version of
wherein the second amino acid sequence has at least a 20 the encoding component using a fourth training dataset
threshold amount of i1dentity with respect to the first that includes a fourth plurality of amino acid sequences
amino acid sequence. of fourth proteins.

Aspect 15. The computing system of any one of aspects Aspect 20. The method of aspect 19, wherein the one or
12-14, wherein the second traiming dataset 1s produced more non-transitory computer readable media store
by the trained generating component. 25 additional computer-executable 1nstructions that, when

Aspect 16. The computing system ol any one of aspects executed by the one or more hardware processors,
12-15, wherein the one or more non-transitory com- cause the one or more processor to perform additional
puter readable media store additional computer-execut- operations comprising: providing additional base
able instructions that, when executed by the one or sequence data to the additional trained version of the
more hardware processors, cause the one or more 30 encoding component, the additional base sequence data
processor to perform additional operations comprising;: corresponding to an additional amino acid sequence of
determining, during the first training process, code data an additional base protein; generating, using the addi-
by the encoding component of the autoencoder based tional trammed version of the encoding component,
on an amino acid sequence of the first training dataset additional code data based on the additional base
obtained by the encoding component; generating, dur- 35 sequence data; and generating, using the additional
ing the first training process, an additional amino acid decoding component, additional variant sequence data
sequence by the decoding component; determining, by that includes a plurality of additional amino acid
the computing system and during the first traiming sequences that correspond to a plurality of additional
process, a measure ol differences between the amino variant proteins of the additional base protein, the
acid sequence and the additional amino acid sequence; 40 plurality of additional variant proteins having at least a

threshold probability of including at least one of the
structural feature or the biophysical property.

based on the measure of differences between the amino

acid sequence and the additional amino acid sequence.
Aspect 17. The computing system of any one of aspects 45

12-16, wherein first computational layers of the decod-

Aspect 21. The computing system of any one of aspects
12-20, wherein the base protein includes at least a
portion ol an antibody.

Aspect 22. The computing system of any one of aspects

ing component are unchanged during the first training
process and second computational layers of the encod-
ing component are modified during the first training

12-21, wherein: the variant sequence data includes a

plurality of additional amino acid sequences of a plu-
rality of additional proteins, individual additional

Process. 50 amino acid sequences of the plurality of additional
Aspect 18. The computing system of any one of aspects amino acid sequences having at least an additional
12-17, wherein the one or more non-transitory com- amount of similarity with respect to the first amino acid
puter readable media store additional computer-execut- sequence and an additional amount of difference with
able instructions that, when executed by the one or respect to the first amino acid sequence; and the one or
more hardware processors, cause the one or more 55 more non-transitory computer readable media store
processor to perform additional operations comprising;: additional computer-executable 1nstructions that, when
obtaining a third training dataset that includes a third executed by the one or more hardware processors,
plurality of amino acid sequences of third proteins, the cause the one or more processor to perform additional
third proteins including a greater number of proteins operations comprising: generating a {irst additional
having at least one of a structural feature or a biophysi- 60 amino acid sequence ol the plurality of additional
cal property than the first plurality of first proteins amino acid sequences using numerical values of the
included in the first training dataset; performing a third code data; and generating, by the computing system, a
training process for a generative adversarial network second additional amino acid sequence of the plurality
that includes the tramned generating component; and of additional amino acid sequences using the numerical
producing an additional trained generating component 65 values of the code data, the second additional amino

in relation to the third training process using the third
training dataset, the additional trained generating com-

acid sequence being different from the first additional
amino acid sequence.

US 11,948,664 B2

35

Aspect 23. A computing system comprising: one or more
hardware processors; and one or more non-transitory
computer readable media storing computer-executable
instructions that, when executed by the one or more
hardware processors, cause the one or more processor
to perform operations comprising: generating code data
by an encoding component of an autoencoder, the code
data corresponding to a representation of a first amino
acid sequence of a base protein that 1s provided as input
to the encoding component; modifying the code data to
produce modified code data; providing the modified
code data to a decoding component of the autoencoder,
the decoding component including a generating com-
ponent ol a generative adversarial network; and gen-
erating, by the decoding component, a second amino
acid sequence ol a variant protein based on the modi-
fied code data, the second amino acid sequence having
one or more positions with different amino acids than
one or more corresponding positions of the first amino
acid sequence of the base protein.

Aspect 24. The computing system of aspect 23, wherein
the code data includes a plurality of numerical values.

Aspect 25. The computing system of aspect 24, wherein
the one or more non-transitory computer readable
media storing additional computer-executable nstruc-
tions that, when executed by the one or more hardware
processors, cause the one or more processor to perform
additional operations comprising: modilying one or
more numerical values of the plurality of numerical
values to produce the modified code data.

Aspect 26. The computing system of aspect 24, wherein
an extent of diflerences between the second amino acid
sequence of the variant protein and the first amino acid
sequence of the base protein 1s based on at least one of
a number of the plurality of numerical values modified
to produce the modified code data or a magmtude of
change to individual numerical values of the one or
more numerical values.

Aspect 27. A method comprising: generating by a com-
puting system including one or more computing
devices having one or more processors and memory,
code data by an encoding component of an autoen-
coder, the code data corresponding to a representation
of a first amino acid sequence of a base protein that 1s
provided as iput to the encoding component; modify-
ing, by the computing system, the code data to produce
modified code data; providing, by the computing sys-
tem, the modified code data to a decoding component
of the autoencoder, the decoding component including
a generating component of a generative adversarial
network; and generating, by the computing system and
using the decoding component, a second amino acid
sequence of a variant protein based on the modified
code data, the second amino acid sequence having one
or more positions with different amino acids than one
or more corresponding positions of the first amino acid
sequence of the base protein.

Aspect 28. The method of aspect 27, wherein the code
data includes a plurality of numerical values.

Aspect 29. The method of aspect 27 or 28, comprising
moditying, by the computing system, one or more
numerical values of the plurality of numerical values to
produce the modified code data.

Aspect 30. The method of any one of aspects 27-29,
wherein an extent of differences between the second
amino acid sequence of the variant protein and the first
amino acid sequence of the base protein 1s based on at

10

15

20

25

30

35

40

45

50

55

60

65

36

least one of a number of the plurality of numerical
values modified to produce the modified code data or a
magnitude of change to individual numerical values of
the one or more numerical values.

What 1s claimed 1s:

1. A method comprising:

performing, by a computing system including one or more
computing devices having one or more processors and
memory, a first training process using a first training
dataset to produce a trained generating component of a
generative adversarial network, the first training dataset
including a first plurality of amino acid sequences of
first proteins;

producing, by the computing system, a second training
dataset including a second plurality of amino acid
sequences of second proteins,

generating, by the computing system, an autoencoder that
includes an encoding component and a decoding com-
ponent, the decoding component comprising the traimned
generating component of the generative adversarial
network:

performing, by the computing system, a second training
process using the second training dataset to generate a
trained version of the autoencoder, the trained version
of the autoencoder including a trained version of the
encoding component that generates code data, the code
data representing one or more amino acid sequences of
the second training dataset;

providing, by the computing system, base sequence data
to the trained version of the autoencoder, the base
sequence data including a first amino acid sequence of
a base protein; and

generating, by the computing system, variant sequence
data that includes a second amino acid sequence of a
variant protein based on the code data, the second
amino acid sequence having an amount of similarity
with respect to the first amino acid sequence and an
amount of difference with respect to the first amino acid
sequence.

2. The method of claim 1, further comprising:

modifying, by the computing system, the code data to
produce modified code data, wherein the modified code
data 1s used by the decoding component to generate the
second amino acid sequence.

3. The method of claim 1, wherein the second amino acid

sequence has at least a threshold amount of i1dentity with
respect to the first amino acid sequence.

4. The method of claim 1, wherein the second training

dataset 1s produced by the trained generating component.

5. The method of claim 1, further comprising:

determining, by the computing system and during the first
training process, code data by the encoding component
of the autoencoder based on an amino acid sequence of
the first tramning dataset obtained by the encoding
component;

generating, by the computing system and during the first
training process, an additional amino acid sequence by
the decoding component;

determining, by the computing system and during the first
training process, a measure of differences between the
amino acid sequence and the additional amino acid
sequence; and

moditying, by the computing system and during the first
training process, one or more computational layers of
the encoding component based on the measure of
differences between the amino acid sequence and the
additional amino acid sequence.

US 11,948,664 B2

37

6. The method of claim 1, wherein first computational
layers of the decoding component are unchanged during the
first training process and second computational layers of the
encoding component are modified during the first training
process.
7. The method of claim 1, further comprising;:
obtaining, by the computing system, a third traiming
dataset that includes a third plurality of amino acid
sequences of third proteins, the third proteins including
a greater number of proteins having at least one of a
structural feature or a biophysical property than the first
proteins included 1n the first training dataset;

performing, by the computing system, a third training
process lor a generative adversarial network that
includes the trained generating component; and

producing, by the computing system, an additional trained
generating component in relation to the third training
process using the third training dataset, the additional
trained generating component generating a plurality of
amino acid sequences of a first group of proteins having
a greater proportion of proteins including at least one of
the structural feature or the biophysical property than a
second group of proteins corresponding to additional
amino acid sequences generated by the trained gener-
ating component.

8. The method of claim 7, further comprising:

generating, by the computing system, an additional auto-

encoder that includes the trained version of the encod-
ing component and an additional decoding component
that includes the additional trained generating compo-
nent; and

performing, by the computing system, a fourth training

process to generate an additional trained version of the
autoencoder 1mcluding an additional trained version of
the encoding component using a fourth training dataset
that includes a fourth plurality of amino acid sequences
of fourth proteins.

9. The method of claim 8, further comprising;:

providing, by the computing system, additional base

sequence data to the additional trained version of the
encoding component, the additional base sequence data
corresponding to an additional amino acid sequence of
an additional base protein;

generating, by the computing system and using the addi-

tional tramned version ol the encoding component,
additional code data based on the additional base
sequence data; and

generating, by the computing system and using the addi-

tional decoding component, additional variant
sequence data that includes a plurality of additional
amino acid sequences that correspond to a plurality of
additional variant proteins of the additional base pro-
tein, the plurality of additional variant proteins having
at least a threshold probability of including at least one
of the structural feature or the biophysical property.

10. The method of claim 1, wherein the base protein
includes at least a portion of an antibody.

11. The method of claim 1, wherein:

the variant sequence data includes a plurality of additional

amino acid sequences of a plurality of additional pro-
teins, 1ndividual additional amino acid sequences of the

10

15

20

25

30

35

40

45

50

55

60

38

plurality of additional amino acid sequences having at
least an additional amount of similarity with respect to
the first amino acid sequence and an additional amount
of difference with respect to the first amino acid
sequence; and

the method further comprising:

generating, by the computing system, a first additional

amino acid sequence of the plurality of additional
amino acid sequences using numerical values of the
code data; and

generating, by the computing system, a second additional

amino acid sequence of the plurality of additional
amino acid sequences using the numerical values of the
code data, the second additional amino acid sequence
being diflerent from the first additional amino acid
sequence.

12. A computing system comprising:

one or more hardware processors; and

one or more non-transitory computer readable media

storing computer-executable instructions that, when

executed by the one or more hardware processors,

cause the one or more hardware processors to perform

operations comprising:

generating code data by an encoding component of an
autoencoder, the code data corresponding to a rep-
resentation of a first amino acid sequence of a base
protein that 1s provided as input to the encoding
component;

moditying the code data to produce modified code data;

providing the modified code data to a decoding com-
ponent of the autoencoder, the decoding component
including a generating component of a generative
adversarial network; and

generating, by the decoding component, a second
amino acid sequence of a variant protein based on
the modified code data, the second amino acid
sequence having one or more positions with different
amino acids than one or more corresponding posi-
tions of the first amino acid sequence of the base
protein.

13. The system of claim 12, wherein the code data
includes a plurality of numerical values.

14. The system of claim 13, wherein the one or more
non-transitory computer readable media storing additional
computer-executable instructions that, when executed by the
one or more hardware processors, cause the one or more
hardware processors to perform additional operations com-
prising;:

modifying one or more numerical values of the plurality

of numerical values to produce the modified code data.

15. The system of claim 13, wherein an extent of differ-
ences between the second amino acid sequence of the

variant protein and the first amino acid sequence of the base
protein 1s based on at least one of a number of the plurality
of numerical values modified to produce the modified code
data or a magnitude of change to individual numerical
values of the plurality of numerical values.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

