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1
GENERATION OF PROTEIN SEQUENCES
USING MACHINE LEARNING TECHNIQUES

PRIORITY INFORMATION

This application is a U.S. national stage filing under 35
US.C. § 371 from International Application No. PCT/
US2020/033646, filed on May 19, 2020, and published as
W02020/236839 A2 on Nov. 26, 2020, which claims benefit
of priority to the filing date of U.S. Provisional Application
Ser. No. 62/849,897, filed May 19, 2019, and U.S. Provi-
sional Application Ser. No. 62/935,980, filed Nov. 15, 2019
and U.S. Provisional Application Ser. No. 63/006,683, filed
Apr. 7, 2020, the contents of which applications are specifi-
cally incorporated by reference herein in their entireties.

BACKGROUND

Proteins are biological molecules that are comprised of
one or more chains of amino acids. Proteins can have
various functions within an organism. For example, some
proteins can be involved in causing a reaction to take place
within an organism. In other examples, proteins can trans-
port molecules throughout the organism. In still other
examples, proteins can be involved in the replication of
genes. Additionally, some proteins can have therapeutic
properties and be used to treat various biological conditions.
The structure and function of proteins are based on the
arrangement of amino acids that comprise the proteins. The
arrangement of amino acids for proteins can be represented
by a sequence of letters with each letter corresponding to an
amino acid at a certain position. The arrangement of amino
acids for proteins can also be represented by three dimen-
sional structures that not only indicate the amino acids at
certain positions of the protein, but also indicate three
dimensional features of the proteins, such as an a-helix or a
[3-sheet.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is illustrated by way of example
and not limitation in the figures of the accompanying
drawings, in which like references indicate similar elements.

FIG. 1 is a diagram illustrating an example framework to
generate protein sequences, in accordance with some imple-
mentations.

FIG. 2 is a diagram illustrating an example framework
that includes an encoding component and a decoding com-
ponent to generate protein sequences, in accordance with
some implementations.

FIG. 3 is a diagram illustrating an example framework
including a generating component and a challenging com-
ponent to generate protein sequences, in accordance with
some implementations.

FIG. 4 is a diagram illustrating an example framework to
generate protein sequences using a first set of training data
that has a first set of characteristics and a second set of
training data that has a second, different set of characteris-
tics, in accordance with some implementations.

FIG. 5 is a diagram illustrating an example framework to
generate antibody sequences that are variants of a parent
antibody, in accordance with some implementations.

FIG. 6 is a diagram illustrating an example framework to
generate amino acid sequences of antibodies that bind to a
specified antigen, in accordance with some implementa-
tions.
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FIG. 7 is a diagram illustrating an example framework to
generate multiple libraries of proteins and to combine the
protein libraries to generate additional proteins, in accor-
dance with some implementations.

FIG. 8 is a diagram illustrating an additional example
framework to generate amino acid sequences of antibodies
using paired amino acid sequences of antibody heavy chains
and light chains, in accordance with some implementations.

FIG. 9 is a diagram illustrating a framework that imple-
ments the use of transfer learning techniques to generate
paired amino acid sequences of antibodies from amino acid
sequences of antibody heavy chains and light chains, in
accordance with some implementations.

FIG. 10 is a diagram illustrating a framework for the
concatenation of amino acid sequences of antibody heavy
chains and light chains, in accordance with some implemen-
tations.

FIG. 11 is a flow diagram illustrating an example method
for producing protein sequences, in accordance with some
implementations.

FIG. 12 is a flow diagram illustrating another example
method for producing protein sequences, in accordance with
some implementations.

FIG. 13 is a flow diagram illustrating an example method
to produce amino acid sequences of proteins that bind to a
specified target molecule, in accordance with some imple-
mentations.

FIG. 14 is a flow diagram illustrating an example method
to produce amino acid sequences of antibodies by combin-
ing amino acid sequences of antibody heavy chains and
amino acid sequences of light chains, in accordance with
some implementations.

FIG. 15 is an example of a scheme to structurally align
amino acid sequences of antibodies before encoding the
amino acid sequences of the antibodies for input to a
generative adversarial network, in accordance with some
implementations.

FIG. 16 illustrates a diagrammatic representation of a
machine in the form of a computer system within which a set
of instructions may be executed for causing the machine to
perform any one or more of the methodologies discussed
herein, according to an example embodiment.

DETAILED DESCRIPTION

Proteins can have many beneficial uses within organisms.
In particular situations, proteins can be used to treat diseases
and other biological conditions that can detrimentally impact
the health of humans and other mammals. In various sce-
narios, proteins can participate in reactions that are benefi-
cial to subjects and that can counteract one or more biologi-
cal conditions being experienced by the subjects. In some
examples, proteins can also bind to target molecules within
an organism that may be detrimental to the health of a
subject. For these reasons, many individuals and organiza-
tions have sought to develop proteins that may have thera-
peutic benefits.

The development of proteins can be a time consuming and
resource intensive process. Often, candidate proteins for
development can be identified as potentially having desired
biophysical properties, three-dimensional (3D) structures,
and/or behavior within an organism. In order to determine
whether the candidate proteins actually have the desired
characteristics, the proteins can be synthesized and then
tested to determine whether the actual characteristics of the
synthesized proteins correspond to the desired characteris-
tics. Due to the amount of resources needed to synthesize
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and test proteins for specified biophysical properties, 3D
structures, and/or behaviors, the number of candidate pro-
teins synthesized for therapeutic purposes is limited. In
some situations, the number of proteins synthesized for
therapeutic purposes can be limited by the loss of resources
that takes place when candidate proteins are synthesized and
do not have the desired characteristics.

The use of computer-implemented techniques to identify
candidate proteins that have particular characteristics has
increased. These conventional techniques, however, can be
limited in their scope and accuracy. In various situations,
conventional computer-implemented techniques to generate
protein sequences can be limited by the amount of data
available and/or the types of data available that may be
needed by those conventional techniques to accurately gen-
erate protein sequences with specified characteristics. Addi-
tionally, the techniques utilized to produce models that can
generate protein sequences with particular characteristics
can be complex and the know-how needed to produce
models that are accurate and efficient can be complex. In
certain scenarios, the length of the protein sequences pro-
duced by conventional models can also be limited because
the accuracy of conventional techniques can decrease as the
lengths of the proteins increases. Thus, the number of
proteins generated by conventional techniques is limited.

The techniques and systems described herein can be used
to generate amino acid sequences of proteins accurately and
efficiently. In particular implementations, generative adver-
sarial networks can be implemented to determine models
that can produce amino acid sequences of proteins. The
generative adversarial networks can be trained using a
number of different training datasets to produce amino acid
sequences for proteins having specified characteristics. For
example, the generative adversarial networks described
herein can produce sequences of amino acids of proteins
having particular biophysical properties. In other examples,
the generative adversarial networks described herein can
produce sequences of amino acids having a particular struc-
ture. Additionally, the techniques and systems described
herein can utilize computer-implemented processes that
analyze the amino acid sequences generated by the genera-
tive adversarial networks. The analysis of the amino acid
sequences can determine whether the characteristics of the
amino acid sequences produced by the generative adver-
sarial networks correspond to a desired set of characteristics.
In particular implementations, the computer-implemented
processes can filter amino acid sequences produced by the
generative adversarial networks to identify amino acid
sequences that correspond to a specified set of characteris-
tics.

In further examples, one or more implementations
described herein may include an autoencoder architecture
that can generate protein sequences. In one or more
examples, a variational autoencoder can be used to generate
protein sequences. In various examples, a variational auto-
encoder can be implemented to generate amino acid
sequences of antibodies. In one or more implementations, a
generative machine learning architecture can include at least
one encoder and a decoder that optimize a loss function to
produce a model that generates amino acid sequences that
correspond to sequences of proteins. After an initial training
of the model, the model can be further modified by training
the model using data that corresponds to amino acid
sequences of proteins that have a specified set of character-
istics, such as one or more specified biophysical properties.

Additionally, the techniques and systems described herein
can be used to generate amino acid sequences of antibodies
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that have at least a threshold probability of binding to a
specified antigen. In these scenarios, the amino acid
sequences can be generated based on antibody-antigen inter-
action data indicating interactions between antibodies and
antigens. For example, the antibody-antigen interaction data
can indicate antigen binding regions of antibodies and the
corresponding epitopes of the antigens that are bound to the
antigen binding regions of the antibodies.

Further, the techniques and systems described herein can
be used to produce amino acid sequences of antibodies using
amino acid sequences of antibody heavy chains and of
antibody light chains that have been generated separately
and then combined. In various implementations, a genera-
tive adversarial network using two generating components
(one for the heavy chain amino acid sequences and another
for the light chain amino acid sequences) can be used to
separately produce heavy chain amino acid sequences and
light chain amino acid sequences that can then be combined
to generate antibody sequences that include both heavy
chains and light chains. The implementation of separate
generating components to generate light chain amino acid
sequences and heavy chain amino acid sequences improves
the efficiency of the generative adversarial network and
minimizes the computing resources utilized to generate
amino acid sequences of antibodies in relation to generative
adversarial networks that implement a single generating
component to produce both the heavy chain and light chain
amino acid sequences of antibodies. That is, fewer comput-
ing resources are utilized to produce a number of antibody
sequences from combinations of separately generated light
chains and heavy chains than the same number of antibody
sequences generated as amino acid sequences that are ini-
tially generated with both light chains and heavy chains. In
addition, the number of overall resources utilized to chemi-
cally synthesize a library of light chains and a library of
heavy chains that can be combined to produce a number of
antibodies based on machine generated light chain
sequences and heavy chain sequences as described herein is
lower than techniques that simply chemically synthesize
antibodies already having both heavy chains and light
chains.

FIG. 1 is a diagram illustrating an example framework
100 to generate protein sequences, in accordance with some
implementations. The framework 100 can include a genera-
tive machine learning architecture 102. The generative
machine learning architecture 102 can include a sequence
generating component 104. The sequence generating com-
ponent 104 can implement a model to generate amino acid
sequences based on input provided to the sequence gener-
ating component 104. For example, the sequence generating
component 104 can produce generated sequences 106. The
generated sequences 106 can include amino acid sequences
of proteins. In one or more examples, the generated
sequences 106 can include amino acid sequences of anti-
bodies. In various implementations, the model implemented
by the sequence generating component 104 can include one
or more functions.

In various implementations, the generative machine learn-
ing architecture 102 can implement one or more neural
network technologies. For example, the machine learning
architecture 102 can implement one or more recurrent neural
networks. Additionally, the machine learning architecture
102 can implement one or more convolutional neural net-
works. In certain implementations, the machine learning
architecture 102 can implement a combination of recurrent
neural networks and convolutional neural networks. In
examples, the machine learning architecture 102 can include
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a generative adversarial network (GAN). In these situations,
the sequence generating component 104 can include a
generator and the generative machine learning architecture
102 can also include a challenging component. In further
examples, the generative machine learning architecture 102
may include an autoencoder. In one or more illustrative
examples, the generative machine learning architecture 102
may include a variational autoencoder. In these scenarios,
the sequence generating component 104 may include at least
one of an encoder or a decoder of a variational autoencoder.

The generated sequences 106 can be produced by the
sequence generating component 104 based on input data
108. In one or more examples, the input data 108 can include
one or more amino acid sequences, such as a template
protein sequence. The input data 108 may also include an
input vector that includes computer-generated noise that is
produced by a random noise generator or a pseudo-random
noise generator.

The generated sequences 106 may be evaluated with
respect to training sequences 110. The training sequences
110 may correspond to amino acid sequences obtained from
the protein sequence data 112. The protein sequence data
112 can include sequences of proteins obtained from one or
more data sources that store protein amino acid sequences.
The protein sequence data 112 may include amino acid
sequences of one or more proteins, such as fibronectin type
IIT (FNIII) proteins, avimers, antibodies, VHH domains,
kinases, zinc fingers, and the like.

The protein sequences included in the protein sequence
data 112 can be subject to data preprocessing 114 before
being provided to the generative machine learning architec-
ture 102. In implementations, the protein sequence data 112
can be arranged according to a classification system by the
data preprocessing 114 before being provided to the gen-
erative machine learning architecture 102. The data prepro-
cessing 114 can include pairing amino acids included in the
proteins of the protein sequence data 112 with numerical
values that can represent structure-based positions within the
proteins. The numerical values can include a sequence of
numbers having a starting point and an ending point. In an
illustrative example, a T can be paired with the number 43
indicating that a Threonine molecule is located at a struc-
ture-based position 43 of a specified protein domain type.

In various implementations, the classification system
implemented by the data preprocessing 114 can designate a
particular number of positions for certain regions of pro-
teins. For example, the classification system can designate
that portions of proteins have particular functions and/or
characteristics can have a specified number of positions. In
various situations, not all of the positions included in the
classification system may be associated with an amino acid
because the number of amino acids in a particular region of
a protein may vary between proteins. To illustrate, the
number of amino acids in a region of a protein can vary for
different types of proteins. In additional examples, the
structure of a protein can be reflected. In examples, positions
of the classification system that are not associated with a
particular amino acid can indicate various structural features
of a protein, such as a turn or a loop. In an illustrative
example, a classification system for antibodies can indicate
that heavy chain regions. light chain regions, and hinge
regions have a specified number of positions assigned to
them and the amino acids of the antibodies can be assigned
to the positions according to the classification system.

In implementations, the data included in the protein
sequence data 112 used to train the generative machine
learning architecture 102 can impact the amino acid
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sequences produced by the sequence generating component
104. For example, the characteristics, biophysical proper-
ties, manufacturing characteristics (e.g., titer, yield, etc.) and
so forth, of the protein sequence data 112 can impact
characteristics, biophysical properties, and/or manufactur-
ing characteristics of the generated sequences 106 produced
by the sequence generating component 104. To illustrate, in
situations where antibodies are included in the protein
sequence data 112 provided to the generative machine
learning architecture 102, the amino acid sequences gener-
ated by the sequence generating component 104 can corre-
spond to antibody amino acid sequences. In another
example, in scenarios where T-cell receptors are included in
the protein sequence data 112 provided to the generative
machine learning architecture 102, the amino acid sequences
generated by the sequence generating component 104 can
correspond to T-cell receptor amino acid sequences. In an
additional example, in situations where kinases are included
in the protein sequence data 112 provided to the generative
machine learning architecture 102, the amino acid sequences
generated by the sequence generating component 104 can
correspond to amino acid sequences of kinases. In imple-
mentations where amino acid sequences of a variety of
different types of proteins are included in the protein
sequence data 112 provided to the generative machine
learning architecture 102, the sequence generating compo-
nent 104 can generate amino acid sequences having char-
acteristics of proteins generally and may not correspond to
a particular type of protein.

The output produced by the data preprocessing 114 can
include structured sequences 116. The structured sequences
116 can include a matrix indicating amino acids associated
with various positions of a protein. In examples, the struc-
tured sequences 116 can include a matrix having columns
corresponding to different amino acids and rows that corre-
spond to structure-based positions of proteins. For each
element in the matrix, a O can be used to indicate the absence
of an amino acid at the corresponding position and a 1 can
be used to indicate the presence of an amino acid at the
corresponding position. In situations where a position rep-
resents a gap in an amino acid sequence, the row associated
with the position can comprise zeroes for each column. The
generated sequence(s) 106 can also be represented using a
vector according to a same or similar number scheme as
used for the structured sequences 116. In some illustrative
examples, the structured sequences 116 and the generated
sequence(s) 106 can be encoded using a method that may be
referred to as a one-hot encoding method.

The generative machine learning architecture 102 may
analyze the generated sequences 106 with respect to the
training sequences 110 to evaluate a loss function 118 of the
generative machine learning architecture 102. In one or
more examples, output of the loss function 118 can be used
to modify the sequences generated by the sequence gener-
ating component 104. For example, output related to the loss
function 118 can be used to modify one or more components
of the generative machine learning architecture 102, such as
an encoder, a decoder, and/or a generator of a GAN, to
produce generated sequences 106 that correspond more
closely to the training sequences 110. In one or more
examples, components of the generative machine learning
architecture 102 may be modified to optimize the loss
function 118. In various examples, components of the gen-
erative machine learning architecture 102 can be modified to
minimize the loss function 118.

After the generative machine learning architecture 102
has undergone a training process, a trained model 120 can be
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generated that can produce sequences of proteins. The
trained model 120 can include one or more components of
the generative machine learning architecture 102 after a
training process using the protein sequence data 112. In one
or more implementations, the trained model 120 can include
a generator of a GAN that has been trained using the protein
sequence data 112. Additionally, the trained model 120 can
include at least one of an encoder or a decoder of an
autoencoder that has been trained using the protein sequence
data 112. In examples, the training process for the generative
machine learning architecture 102 can be complete after the
function(s) implemented by one or more components of the
generative machine learning architecture 102 converge. The
convergence of a function can be based on the movement of
values of model parameters toward particular values as
protein sequences are generated by the sequence generating
component 104 and feedback is obtained in relation to the
loss function 118 based on differences between the training
sequences 110 and the generated sequences 106.

In various implementations, the training of the generative
machine learning architecture 102 can be complete when the
protein sequences generated by the sequence generating
component 104 have particular characteristics. To illustrate,
the amino acid sequences generated by the sequence gen-
erating component 104 can be analyzed by a software tool
that can analyze amino acid sequences to determine at least
one of biophysical properties of the amino acid sequences,
structural features of the amino acid sequences, or adherence
to amino acid sequences corresponding to one or more
protein germlines. As used herein, germline, can correspond
to amino acid sequences of proteins that are conserved when
cells of the proteins replicate. An amino acid sequence can
be conserved from a parent cell to a progeny cell when the
amino acid sequence of the progeny cell has at least a
threshold amount of identity with respect to the correspond-
ing amino acid sequence in the parent cell. In an illustrative
example, a portion of an amino acid sequence of a human
antibody that is part of a kappa light chain that is conserved
from a parent cell to a progeny cell can be a germline portion
of the antibody.

Sequence input 122 can be provided to the trained model
120, and the trained model 120 can produce sequences 124.
The sequence input 122 can correspond to random or
pseudo-random series of numbers that can be used to
produce the sequences 124 that can include amino acid
sequences of proteins. The sequences 124 produced by the
trained model 120 can be represented as a matrix structure
that is the same as or similar to the matrix structure used to
represent the structured sequences 116 and the generated
sequence(s) 106. In various implementations, the matrices
produced by the trained model 120 that comprise the
sequences 124 can be decoded to produce a string of amino
acids that correspond to the sequence of a protein. At
operation 126, the sequences 124 can be evaluated to
determine whether the sequences 124 have a specified set of
characteristics. The sequence evaluation performed at opera-
tion 126 can produce metrics 128 that indicate characteris-
tics of the sequences 124. Additionally, the metrics 128 can
indicate an amount of correspondence between the charac-
teristics of the sequences 124 and a specified set of charac-
teristics. In some examples, the metrics 128 can indicate a
number of positions of an amino acid sequence 124 that vary
from an amino acid sequence of a protein produced from a
germline gene.

The sequences 124 produced by the model 120 can
correspond to various types of proteins. For examples, the
sequences 124 can correspond to proteins that function as
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T-cell receptors. In additional examples, the sequences 124
can correspond to proteins that function as catalysts to cause
biochemical reactions within an organism to take place. The
sequences 124 can also correspond to one or more types of
antibodies. To illustrate, the sequences 124 can correspond
to one or more antibody subtypes, such as immunoglobin A
(IgA), immunoglobin D (IgD), immunoglobin E (IgE),
immunoglobin G (IgG), or immunoglobin M (IgM). Further,
the sequences 124 can correspond to additional proteins that
bind antigens. In examples, the sequences 124 can corre-
spond to affibodies, affilins, affimers, affitins, alphabodies,
anticalins, avimers, monobodies, designed ankyrin repeat
proteins (DARPins), nanoCLAMP (clostridal antibody
mimetic proteins), antibody fragments, or combinations
thereof. In still other examples, the sequences 124 can
correspond to amino acid sequences that participate in
protein-to-protein interactions, such as proteins that have
regions that bind to antigens or regions that bind to other
molecules.

In some implementations, the sequences 124 can be
subject to sequence filtering at operation 130 to produce one
or more filtered sequences 132. The sequence filtering 130
can parse the sequences 124 for one or more of the
sequences 124 that correspond to one or more characteris-
tics. For example, the sequence filtering at operation 130 can
analyze the sequences 124 to identify sequences 124 that
have specified amino acids at particular positions. The
sequence filtering 130 can also identify one or more of the
sequences 124 that have one or more particular strings of
amino acids. In various implementations, the sequence fil-
tering at operation 130 can identify one or more of the
sequences 124 that have a set of biophysical properties
based on similarities between at least one of the sequences
124 and amino acid sequences of proteins having the set of
biophysical properties.

FIG. 2 is a diagram illustrating an example framework
200 that includes an encoding component and a decoding
component to generate protein sequences, in accordance
with some implementations. The framework 200 can include
a generative machine learning architecture 202. The genera-
tive machine learning architecture 202 can correspond to an
autoencoder implementation and include an encoding com-
ponent 204 and a decoding component 206. The encoding
component 204 can determine an encoding for input amino
acid sequences and the encoding can be decoded by the
decoding component 206 to produce one or more additional
amino acid sequences. In various examples, an input sample
208 can be provided to the decoding component 206 and the
decoding component 206 can use the input sample 208 and
the encoding to produce generated sequences 210. The
generated sequences 210 can be analyzed with respect to the
training sequences 212 and a loss function 214 can be
optimized based on differences between the generated
sequences 210 and the training sequences 212. In one or
more examples, output of the loss function 214 can be used
to modify the sequences generated by the decoding compo-
nent 206. In one or more examples, at least one of the
encoding component 204 or the decoding component 206
may be modified to optimize the loss function 214. In
various examples, at least one of the encoding component
204 or the decoding component 206 can be modified to
minimize the loss function 214.

The generated sequences 210 can include amino acid
sequences of proteins. In one or more examples, the gener-
ated sequences 210 can include amino acid sequences of
antibodies. In various implementations, the decoding com-
ponent 206 can implement a model that produces the gen-
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erated sequences 210. In various examples, the model imple-
mented by the decoding component 206 can include one or
more functions.

The training sequences 212 may correspond to amino acid
sequences obtained from the protein sequence data 214. The
protein sequence data 214 can include sequences of proteins
obtained from one or more data sources that store protein
amino acid sequences. The protein sequence data 214 may
include amino acid sequences of one or more proteins, such
as fibronectin type III (FNIII) proteins, avimers, antibodies,
VHH domains, kinases, zinc fingers, and the like.

The protein sequences included in the protein sequence
data 214 can be subject to data preprocessing 216 before
being provided to the generative machine learning architec-
ture 202. In implementations, the protein sequence data 214
can be arranged according to a classification system by the
data preprocessing 216 before being provided to the gen-
erative machine learning architecture 202. The data prepro-
cessing 216 can include pairing amino acids included in the
proteins of the protein sequence data 214 with numerical
values that can represent structure-based positions within the
proteins. The numerical values can include a sequence of
numbers having a starting point and an ending point. In an
illustrative example, a T can be paired with the number 43
indicating that a Threonine molecule is located at a struc-
ture-based position 43 of a specified protein domain type.

In various implementations, the classification system
implemented by the data preprocessing 216 can designate a
particular number of positions for certain regions of pro-
teins. For example, the classification system can designate
that portions of proteins have particular functions and/or
characteristics can have a specified number of positions. In
various situations, not all of the positions included in the
classification system may be associated with an amino acid
because the number of amino acids in a particular region of
a protein may vary between proteins. To illustrate, the
number of amino acids in a region of a protein can vary for
different types of proteins. In additional examples, the
structure of a protein can be reflected. In examples, positions
of the classification system that are not associated with a
particular amino acid can indicate various structural features
of a protein, such as a turn or a loop. In an illustrative
example, a classification system for antibodies can indicate
that heavy chain regions. light chain regions, and hinge
regions have a specified number of positions assigned to
them and the amino acids of the antibodies can be assigned
to the positions according to the classification system.

In implementations, the data included in the protein
sequence data 216 used to train the generative machine
learning architecture 202 can impact the amino acid
sequences produced by the decoding component 206. For
example, the characteristics, biophysical properties, manu-
facturing characteristics (e.g., titer, yield, etc.) and so forth,
of the protein sequence data 216 can impact characteristics,
biophysical properties, and/or manufacturing characteristics
of the generated sequences 210 produced by the decoding
component 206. To illustrate, in situations where antibodies
are included in the protein sequence data 216 provided to the
generative machine learning architecture 202, the amino
acid sequences generated by the decoding component 206
can correspond to antibody amino acid sequences. In
another example, in scenarios where T-cell receptors are
included in the protein sequence data 216 provided to the
generative machine learning architecture 202, the amino
acid sequences generated by the decoding component 206
can correspond to T-cell receptor amino acid sequences. In
an additional example, in situations where kinases are
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included in the protein sequence data 216 provided to the
generative machine learning architecture 202, the amino
acid sequences generated by the decoding component 206
can correspond to amino acid sequences of kinases. In
implementations where amino acid sequences of a variety of
different types of proteins are included in the protein
sequence data 216 provided to the generative machine
learning architecture 202, the decoding component 206 can
generate amino acid sequences having characteristics of
proteins generally and may not correspond to a particular
type of protein.

The output produced by the data preprocessing 218 can
include structured sequences 220. The structured sequences
220 can include a matrix indicating amino acids associated
with various positions of a protein. In examples, the struc-
tured sequences 220 can include a matrix having columns
corresponding to different amino acids and rows that corre-
spond to structure-based positions of proteins. For each
element in the matrix, a 0 can be used to indicate the absence
of an amino acid at the corresponding position and a 1 can
be used to indicate the presence of an amino acid at the
corresponding position. In situations where a position rep-
resents a gap in an amino acid sequence, the row associated
with the position can comprise zeroes for each column. The
generated sequence(s) 210 can also be represented using a
vector according to a same or similar number scheme as
used for the structured sequences 220. In some illustrative
examples, the structured sequences 220 and the generated
sequence(s) 210 can be encoded using a method that may be
referred to as a one-hot encoding method.

After the generative machine learning architecture 202
has undergone a training process, a trained model 222 can be
generated that can produce sequences of proteins. The
trained model 222 can include one or more components of
the generative machine learning architecture 202 after a
training process using the protein sequence data 216. In one
or more implementations, the trained model 222 can include
at least one of the encoding component 204 or the decoding
component 206 that has been trained using the protein
sequence data 216. In examples, the training process for the
generative machine learning architecture 202 can be com-
plete after the function(s) implemented by one or more
components of the generative machine learning architecture
202 converge. The convergence of a function can be based
on the movement of values of model parameters toward
particular values as protein sequences are generated by the
decoding component 206 and feedback is obtained in rela-
tion to the loss function 214 based on differences between
the training sequences 212 and the generated sequences 210.

In various implementations, the training of the generative
machine learning architecture 202 can be complete when the
protein sequences generated by the decoding component 206
have particular characteristics. To illustrate, the amino acid
sequences generated by the decoding component 206 can be
analyzed by a software tool that can analyze amino acid
sequences to determine at least one of biophysical properties
of the amino acid sequences, structural features of the amino
acid sequences, or adherence to amino acid sequences
corresponding to one or more protein germlines. As used
herein, germline, can correspond to amino acid sequences of
proteins that are conserved when cells of the proteins
replicate. An amino acid sequence can be conserved from a
parent cell to a progeny cell when the amino acid sequence
of'the progeny cell has at least a threshold amount of identity
with respect to the corresponding amino acid sequence in the
parent cell. In an illustrative example, a portion of an amino
acid sequence of a human antibody that is part of a kappa
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light chain that is conserved from a parent cell to a progeny
cell can be a germline portion of the antibody.

Sequence input 224 can be provided to the trained model
222, and the trained model 222 can produce sequences 226.
The sequence input 224 can correspond to random or
pseudo-random series of numbers that can be used to
produce the sequences 226 that can include amino acid
sequences of proteins. The sequences 226 produced by the
trained model 222 can be represented as a matrix structure
that is the same as or similar to the matrix structure used to
represent the structured sequences 220 and the generated
sequence(s) 210. In various implementations, the matrices
produced by the trained model 222 that comprise the
sequences 226 can be decoded to produce a string of amino
acids that correspond to the sequence of a protein. At
operation 228, the sequences 226 can be evaluated to
determine whether the sequences 226 have a specified set of
characteristics. The sequence evaluation performed at opera-
tion 228 can produce metrics 230 that indicate characteris-
tics of the sequences 226. Additionally, the metrics 230 can
indicate an amount of correspondence between the charac-
teristics of the sequences 226 and a specified set of charac-
teristics. In some examples, the metrics 230 can indicate a
number of positions of an amino acid sequence 226 that vary
from an amino acid sequence of a protein produced from a
germline gene.

The sequences 226 produced by the model 222 can
correspond to various types of proteins. For examples, the
sequences 226 can correspond to proteins that function as
T-cell receptors. In additional examples, the sequences 226
can correspond to proteins that function as catalysts to cause
biochemical reactions within an organism to take place. The
sequences 226 can also correspond to one or more types of
antibodies. To illustrate, the sequences 226 can correspond
to one or more antibody subtypes, such as immunoglobin A
(IgA), immunoglobin D (IgD), immunoglobin E (IgE),
immunoglobin G (IgG), or immunoglobin M (IgM). Further,
the sequences 226 can correspond to additional proteins that
bind antigens. In examples, the sequences 226 can corre-
spond to affibodies, affilins, affimers, affitins, alphabodies,
anticalins, avimers, monobodies, designed ankyrin repeat
proteins (DARPins), nanoCLAMP (clostridal antibody
mimetic proteins), antibody fragments, or combinations
thereof. In still other examples, the sequences 226 can
correspond to amino acid sequences that participate in
protein-to-protein interactions, such as proteins that have
regions that bind to antigens or regions that bind to other
molecules.

In some implementations, the sequences 226 can be
subject to sequence filtering at operation 232 to produce one
or more filtered sequences 234. The sequence filtering 232
can parse the sequences 226 for one or more of the
sequences 226 that correspond to one or more characteris-
tics. For example, the sequence filtering at operation 232 can
analyze the sequences 226 to identify sequences 226 that
have specified amino acids at particular positions. The
sequence filtering 232 can also identify one or more of the
sequences 226 that have one or more particular strings of
amino acids. In various implementations, the sequence fil-
tering at operation 232 can identify one or more of the
sequences 226 that have a set of biophysical properties
based on similarities between at least one of the sequences
226 and amino acid sequences of proteins having the set of
biophysical properties.

FIG. 3 is a diagram illustrating an example framework
300 including a generating component and a challenging
component to generate protein sequences, in accordance

20

25

40

45

60

65

12

with some implementations. The framework 300 can include
a generative machine learning architecture 302. The genera-
tive machine learning architecture 302 can include a gener-
ating component 304 and a challenging component 306. The
generating component 304 can implement a model to gen-
erate amino acid sequences based on input provided to the
generating component 304. In various implementations, the
model implemented by the generating component 304 can
include one or more functions. The challenging component
306 can generate output indicating whether the amino acid
sequences produced by the generating component 304 sat-
isfy various characteristics. The output produced by the
challenging component 306 can be provided to the gener-
ating component 304 and the model implemented by the
generating component 304 can be modified based on the
feedback provided by the challenging component 306. In
various implementations, the challenging component 306
can compare the amino acid sequences generated by the
generating component 304 with amino acid sequences of
proteins and generate an output indicating an amount of
correspondence between the amino acid sequences produced
by the generating component 304 and the amino acid
sequences of proteins provided to the challenging compo-
nent 306.

In various implementations, the machine learning archi-
tecture 302 can implement one or more neural network
technologies. For example, the machine learning architec-
ture 302 can implement one or more recurrent neural net-
works. Additionally, the machine learning architecture 302
can implement one or more convolutional neural networks.
In certain implementations, the machine learning architec-
ture 302 can implement a combination of recurrent neural
networks and convolutional neural networks. In examples,
the machine learning architecture 302 can include a genera-
tive adversarial network (GAN). In these situations, the
generating component 304 can include a generator and the
challenging component 306 can include a discriminator. In
additional implementations, the machine learning architec-
ture 302 can include a Wasserstein generative adversarial
network (WGAN). In these scenarios, the generating com-
ponent 304 can include a generator and the classifying
component 306 can include a critic.

In the illustrative example of FIG. 3, an input vector 308
can be provided to the generating component 304 and the
generating component 304 can produce one or more gener-
ated sequences 310 from the input vector 308 using a model.
In particular implementations, the input vector 308 can
include noise that is generated by a random or pseudo-
random number generator. The generated sequence(s) 310
can be compared by the challenging component 306 against
sequences of proteins included in the protein sequence data
312 that have been encoded according to a particular
schema. The protein sequence data 312 can include
sequences of proteins obtained from one or more data
sources that store protein sequences.

Based on similarities and differences between the gener-
ated sequence(s) 310 and the sequences obtained from the
protein sequence data 312, the classifying component 306
can generate a classification output 314 that indicates an
amount of similarity or an amount of difference between the
generated sequence 310 and sequences included in the
protein sequence data 312. In examples, the challenging
component 306 can label the generated sequence(s) 310 as
zero and the structured sequences obtained from the protein
sequence data 312 as one. In these situations, the classifi-
cation output 314 can correspond to a number from 0 and 1.
In additional examples, the challenging component 306 can
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implement a distance function that produces an output that
indicates an amount of distance between the generated
sequence(s) 310 and the proteins included in the protein
sequence data 312. In these scenarios, the challenging
component 306 can label the generated sequence(s) 310 as
-1 and the encoded amino acid sequences obtained from the
protein sequence data 312 as 1. In implementations where
the challenging component 306 implements a distance func-
tion, the classification output 314 can be a number from -
to 0. In some examples, the amino acid sequence obtained
from the protein sequence data 312 can be referred to as
ground truth data.

The protein sequences included in the protein sequence
data 312 can be subject to data preprocessing 316 before
being provided to the challenging component 306. In imple-
mentations, the protein sequence data 312 can be arranged
according to a classification system before being provided to
the challenging component 306. The data preprocessing 316
can include pairing amino acids included in the proteins of
the protein sequence data 312 with numerical values that can
represent structure-based positions within the proteins. The
numerical values can include a sequence of numbers having
a starting point and an ending point. In an illustrative
example, a T can be paired with the number 43 indicating
that a Threonine molecule is located at a structure-based
position 43 of a specified protein domain type. In illustrative
examples, structure-based numbering can be applied to any
general protein type, such as fibronectin type III (FNIII)
proteins, avimers, antibodies, VHH domains, kinases, zinc
fingers, and the like.

In various implementations, the classification system
implemented by the data preprocessing 316 can designate a
particular number of positions for certain regions of pro-
teins. For example, the classification system can designate
that portions of proteins have particular functions and/or
characteristics can have a specified number of positions. In
various situations, not all of the positions included in the
classification system may be associated with an amino acid
because the number of amino acids in a particular region of
a protein may vary between proteins. To illustrate, the
number of amino acids in a region of a protein can vary for
different types of proteins. In additional examples, the
structure of a protein can be reflected. In examples, positions
of the classification system that are not associated with a
particular amino acid can indicate various structural features
of a protein, such as a turn or a loop. In an illustrative
example, a classification system for antibodies can indicate
that heavy chain regions. light chain regions, and hinge
regions have a specified number of positions assigned to
them and the amino acids of the antibodies can be assigned
to the positions according to the classification system.

In implementations, the data used to train the machine
learning architecture 302 can impact the amino acid
sequences produced by the generating component 304. For
example, in situations where antibodies are included in the
protein sequence data 312 provided to the challenging
component 306, the amino acid sequences generated by the
generating component 304 can correspond to antibody
amino acid sequences. In another example, in scenarios
where T-cell receptors are included in the protein sequence
data 312 provided to the challenging component 306 the
amino acid sequences generated by the generating compo-
nent 304 can correspond to T-cell receptor amino acid
sequences. In an additional example, in situations where
kinases are included in the protein sequence data 312
provided to the challenging component 306, the amino acid
sequences generated by the generating component 304 can
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correspond to amino acid sequences of kinases. In imple-
mentations where amino acid sequences of a variety of
different types of proteins are included in the protein
sequence data 312 provided to the classifying component
306, the generating component 304 can generate amino acid
sequences having characteristics of proteins generally and
may not correspond to a particular type of protein. Further,
in various examples, the amino acid sequences produced by
the generating component 304 can correspond to the types of
proportions of amino acid sequences included in the protein
sequence data 312 provided to the challenging component
306.

The output produced by the data preprocessing 316 can
include structured sequences 318. The structured sequences
318 can include a matrix indicating amino acids associated
with various positions of a protein. In examples, the struc-
tured sequences 318 can include a matrix having columns
corresponding to different amino acids and rows that corre-
spond to structure-based positions of proteins. For each
element in the matrix, a O can be used to indicate the absence
of an amino acid at the corresponding position and a 1 can
be used to indicate the presence of an amino acid at the
corresponding position. In situations where a position rep-
resents a gap in an amino acid sequence, the row associated
with the position can comprise zeroes for each column. The
generated sequence(s) 310 can also be represented using a
vector according to a same or similar number scheme as
used for the structured sequences 318. In some illustrative
examples, the structured sequences 318 and the generated
sequence(s) 310 can be encoded using a method that may be
referred to as a one-hot encoding method.

After the machine learning architecture 302 has under-
gone a training process, a trained model 320 can be gener-
ated that can produce sequences of proteins. The trained
model 320 can include the generating component 304 after
a training process using the protein sequence data 312. In
examples, the training process for the machine learning
architecture 302 can be complete after the function(s) imple-
mented by the generating component 304 and the function(s)
implemented by the challenging component 306 converge.
The convergence of a function can be based on the move-
ment of values of model parameters toward particular values
as protein sequences are generated by the generating com-
ponent 304 and feedback is obtained from the challenging
component 306. In various implementations, the training of
the machine learning architecture 302 can be complete when
the protein sequences generated by the generating compo-
nent 304 have particular characteristics. To illustrate, the
amino acid sequences generated by the generating compo-
nent 304 can be analyzed by a software tool that can analyze
amino acid sequences to determine at least one of biophysi-
cal properties of the amino acid sequences, structural fea-
tures of the amino acid sequences, or adherence to amino
acid sequences corresponding to one or more protein ger-
mlines. As used herein, germline, as used herein, can cor-
respond to amino acid sequences of proteins that are con-
served when cells of the proteins replicate. An amino acid
sequence can be conserved from a parent cell to a progeny
cell when the amino acid sequence of the progeny cell has
at least a threshold amount of identity with respect to the
corresponding amino acid sequence in the parent cell. In an
illustrative example, a portion of an amino acid sequence of
a human antibody that is part of a kappa light chain that is
conserved from a parent cell to a progeny cell can be a
germline portion of the antibody.

Sequence input 322 can be provided to the trained model
320, and the trained model 320 can produce sequences 324.
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The sequence input 322 can correspond to random or
pseudo-random series of numbers that can be used to
produce the sequences 324 that can include amino acid
sequences of proteins. The sequences 324 produced by the
trained model 320 can be represented as a matrix structure
that is the same as or similar to the matrix structure used to
represent the structured sequences 318 and the generated
sequence(s) 310. In various implementations, the matrices
produced by the trained model 320 that comprise the
sequences 324 can be decoded to produce a string of amino
acids that correspond to the sequence of a protein. At 326,
the sequences 324 can be evaluated to determine whether the
sequences 324 have a specified set of characteristics. The
sequence evaluation 326 can produce metrics 328 that
indicate characteristics of the sequences 324. Additionally,
the metrics 328 can indicate an amount of correspondence
between the characteristics of the sequences 324 and a
specified set of characteristics. In some examples, the met-
rics 328 can indicate a number of positions of an amino acid
sequence 324 that vary from an amino acid sequence of a
protein produced from a germline gene.

The sequences 324 produced by the model 320 can
correspond to various types of proteins. For examples, the
sequences 324 can correspond to proteins that function as
T-cell receptors. In additional examples, the sequences 324
can correspond to proteins that function as catalysts to cause
biochemical reactions within an organism to take place. The
sequences 324 can also correspond to one or more types of
antibodies. To illustrate, the sequences 324 can correspond
to one or more antibody subtypes, such as immunoglobin A
(IgA), immunoglobin D (IgD), immunoglobin E (IgE),
immunoglobin G (IgG), or immunoglobin M (IgM). Further,
the sequences 324 can correspond to additional proteins that
bind antigens. In examples, the sequences 324 can corre-
spond to affibodies, affilins, affimers, affitins, alphabodies,
anticalins, avimers, monobodies, designed ankyrin repeat
proteins (DARPins), nanoCLAMP (clostridal antibody
mimetic proteins), antibody fragments, or combinations
thereof. In still other examples, the sequences 324 can
correspond to amino acid sequences that participate in
protein-to-protein interactions, such as proteins that have
regions that bind to antigens or regions that bind to other
molecules.

In some implementations, the sequences 324 can be
subject to sequence filtering 330 to produce one or more
filtered sequences 332. The sequence filtering 330 can parse
the sequences 324 for one or more of the sequences 324 that
correspond to one or more characteristics. For example, the
sequence filtering 330 can analyze the sequences 324 to
identify sequences 324 that have specified amino acids at
particular positions. The sequence filtering 330 can also
identify one or more of the sequences 324 that have one or
more particular strings of amino acids. In various imple-
mentations, the sequence filtering 330 can identify one or
more of the sequences 324 that have a set of biophysical
properties based on similarities between at least one of the
sequences 324 and amino acid sequences of proteins having
the set of biophysical properties.

FIG. 4 is a diagram illustrating an example framework
400 to generate protein sequences using a first set of training
data having a first set of characteristics and a second set of
training data that has a second set of characteristics that is
different from the first set of characteristics, in accordance
with some implementations. The framework 400 can include
a first generative adversarial network 402. The first genera-
tive adversarial network 402 can include a first generating
component 404 and a first challenging component 406. In
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various implementations, the first challenging component
406 can be a discriminator. In additional situations, such as
when the first generative adversarial network 402 is a
Wasserstein GAN, the first challenging component 406 can
include a critic. The first generating component 204 can
implement a model to generate amino acid sequences based
on input provided to the first generating component 404. The
first challenging component 406 can generate output indi-
cating whether the amino acid sequences produced by the
generating component 404 satisfy various characteristics.
The output produced by the first challenging component 406
can be provided to the generating component 404 and a
model implemented by the first generating component 404
can be modified based on the feedback provided by the first
challenging component 406. In various implementations, the
first challenging component 406 can compare the amino acid
sequences produced by the first generating component 404
with amino acid sequences of proteins and generate an
output indicating an amount of correspondence between the
amino acid sequences produced by the first generating
component 404 and the amino acid sequences of proteins
provided to the first challenging component 406.

A first input vector 408 can be provided to the first
generating component 404 and the first generating compo-
nent 404 can produce one or more first generated sequences
410 using the first input vector 408 using a model. In
particular implementations, the first input vector 408 can be
produced using a random or pseudo-random number gen-
erator. In illustrative examples, the first input vector 408 can
include a noise signal that includes a series of numbers.

The first generated sequence(s) 410 can be compared by
the first challenging component 406 against sequences of
proteins included in the protein sequence data 412. The first
protein sequence data 412 can include sequences of proteins
obtained from one or more data sources that store protein
sequences. Based on similarities and differences between the
first generated sequence(s) 410 and the sequences obtained
from the protein sequence data 412, the first challenging
component 406 can generate a first classification output 414
that indicates an amount of similarity or an amount of
difference between the first generated sequence(s) 410 and
sequences included in the first protein sequence data 412.
The first challenging component 406 can label the first
generated sequence(s) 410 with a zero and structured
sequences derived from the first protein sequence data 412
with a one. In these situations, the first classification output
414 can include a number from O and 1 In additional
examples when the first generative adversarial network 402
is a Wasserstein GAN, the first challenging component 406
can implement a distance function that produces an output
that indicates an amount of distance between the first
generated sequence(s) 410 and the proteins included in the
first protein sequence data 412. In these scenarios, the first
challenging component 406 can label the first generated
sequence(s) 410 as -1 and the encoded amino acid
sequences obtained from the first protein sequence data 412
as 1. In implementations where the first challenging com-
ponent 406 implements a distance function, the first classi-
fication output 414 can be a number from —co to «. In some
examples, the amino acid sequences obtained from the first
protein sequence data 412 can be referred to as ground truth
data.

The protein sequences included in the protein sequence
data 412 can be subject to first data preprocessing 416 before
being provided to the first challenging component 406. In
implementations, the protein sequence data 412 can be
arranged according to a classification system before being
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provided to the first challenging component 406. The first
data preprocessing 416 can include pairing amino acids
included in the proteins of the first protein sequence data 412
with numerical values that can represent positions within the
proteins. The numerical values can include a sequence of
numbers having a starting point and an endpoint. The first
data preprocessing 416 can generate first structured
sequences 418 that are provided to the first challenging
component 406. The first structured sequences 418 can
include a matrix indicating amino acids associated with
various positions of a protein. In examples, the first struc-
tured sequences 418 can include a matrix having columns
corresponding to different amino acids and rows that corre-
spond to structure-based positions of proteins. For each
element in the matrix, a O can be used to indicate the absence
of an amino acid at the corresponding position and a 1 can
be used to indicate the presence of an amino acid at the
corresponding position. In situations where a position rep-
resents a gap in an amino acid sequence, the row associated
with the position can comprise zeroes for each column. The
first generated sequence(s) 410 can also be represented using
a vector according to a same or similar number scheme as
used for the first structured sequences 418. In some illus-
trative examples, the first structured sequences 418 and the
first generated sequence(s) 410 can be encoded using a
method that may be referred to as a one-hot encoding
method.

After the first generative adversarial network 402 has
undergone a training process, a trained model 420 can be
generated that can produce sequences of proteins. In
examples, the training process for the first generative adver-
sarial network 402 can be complete after the function(s)
implemented by the first generating component 404 con-
verge. In various implementations, the training of the first
generative adversarial network 402 can be complete when
the protein sequences generated by the first generating
component 404 have particular characteristics. To illustrate,
the amino acid sequences generated using the trained model
420 can be analyzed by a software tool that can analyze
amino acid sequences to determine at least one of biophysi-
cal properties of the amino acid sequences, structural fea-
tures of the amino acid sequences, or adherence to amino
acid sequences corresponding to one or more amino acid
sequences derived from a germline gene of a protein.

First sequence input 422 can be provided to the trained
model 420, and the trained model 420 can produce first
sequences 424. The first sequence input 422 can correspond
to random or pseudo-random series of numbers that can be
used to produce the first sequences 424 that correspond to
amino acids and the first sequences 424 can include amino
acid sequences of proteins. The first sequences 424 produced
by the trained model 420 can be represented as a matrix
structure that is the same as or similar to the matrix structure
used to represent the first structured sequences 418 and the
first generated sequence(s) 410. In various implementations,
the matrices produced by the trained model 420 that com-
prise the first sequences 424 can be decoded to produce a
string of amino acids that correspond to the sequence of a
protein. At operation 426, a model evaluation 426 can be
performed with respect to the trained model 420 based on
the first sequences 424 produced by the trained model 420
and based on model evaluation criteria 428. In particular
implementations, the model evaluation criteria 428 can be
the same or similar to the criteria utilized to determine
whether the training of the first generative adversarial net-
work 402 has been completed. In additional implementa-
tions, the model evaluation criteria 428 can be different from
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the criteria utilized to determine whether the training of the
first generative adversarial network 402 has been completed.
In illustrative examples, the model evaluation criteria 428
can correspond to characteristics of the sequences produced
using the trained model 420. In these scenarios, the model
evaluation 426 can include comparing the first sequences
424 to sequence characteristics included in the model evalu-
ation criteria 428. To illustrate, the model evaluation 426 can
include determining whether the first sequences 424 include
specified amino acid sequences at particular positions. In
additional implementations, the model evaluation 426 can
include determining whether the first sequences 424 corre-
spond to amino acids having specified biophysical and/or
having specified tertiary structures. Further, the model
evaluation 426 can include determining whether there is
convergence with respect to the model 420. In some
examples, the model evaluation 426 can include review by
a human expert of the first sequences 424 based on the
model evaluation criteria 428.

In illustrative examples, the protein sequence data 412
can include amino acid sequences of antibodies. In these
scenarios, the amino acid sequences provided to the first
challenging component 406 can correspond to antibodies
having a number of different characteristics. For example,
the first challenging component 406 can be provided amino
acid sequences from antibodies of different isotypes, IgA,
IgD, IgE, IgD, and/or IgM. In additional examples, the
amino acid sequences provided to the first challenging
component 406 can be related to proteins derived from
genes of different germlines. In further examples, the amino
acid sequences of antibodies provided to the first challeng-
ing component 406 can have various lengths and/or
sequences for the variable regions of the light chains and/or
the variable regions for the heavy chains. In still other
examples, the amino acid sequences provided to the first
challenging component 406 can be at least portions of light
chain regions of antibodies, at least portions of heavy chain
regions of antibodies, or combinations thereof. In still addi-
tional examples, the amino acid sequences provided to the
first challenging component 406 can have a number of
different biophysical properties of antibodies, such as amino
acid sequences corresponding to hydrophobic regions,
amino acid sequences corresponding to negatively charged
regions, amino acid sequences corresponding to positively
charged regions, or combinations thereof. Further, the amino
acid sequences provided to the first challenging component
406 can correspond to antibodies and/or antibody regions
having various solubility characteristics and/or various ther-
mal degradation characteristics.

As a result of training the first generative adversarial
network 402 on a number of amino acid sequences of
proteins having a first set of characteristics. In examples, the
first generative adversarial network 402 can be trained using
amino acid sequences having a relatively general property.
In some implementations, the first generative adversarial
network 402 can be trained using a dataset on the order of
thousands or more amino acid sequences. In a particular
illustrative example, the first generative adversarial network
402 can be trained to generate amino acid sequences that
exhibit characteristics that correspond to antibodies, in gen-
eral. In these implementations, the model evaluation 426 can
determine whether the first sequences 424 correspond to
general characteristics of antibodies. For example, the model
evaluation criteria 428 can identify the structure of antibod-
ies in the first sequences 424. To illustrate, the model
evaluation 426 can determine whether the first sequences
424 have variable regions and constant regions. The model
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evaluation 426 can also determine whether the first
sequences 424 have a specified number or range of numbers
of amino acids that correspond to a number of amino acids
in a heavy chain region and/or a specified number or range
of numbers of amino acids in a light chain region. Addi-
tionally, the model evaluation 426 can determine whether
the first sequences 424 have hinge regions linking constant
regions of heavy chains. Further, the model evaluation 426
can determine whether the first sequences 424 have amino
acids that can form disulfide bonds at specified positions.

After the model evaluation 426 determines that the trained
model 420 satisfies one or more of the model evaluation
criteria, the trained model 420 can undergo further training
on another dataset. In implementations, the trained model
420 can be represented as being included in a second
generative adversarial network 430 that comprises a second
generating component 432 and a second challenging com-
ponent 434. In particular examples, the trained model 420
can be represented by the second generating component 432.
In various implementations, the second generating compo-
nent 432 can include the trained model 420 after one or more
modifications have been made to the trained model 420. For
example, modifications can be made to the trained model
420 in relation to the architecture of the trained model 420,
such as the addition of one or more hidden layers or changes
to one or more network filters. The second generating
component 432 can obtain a second input vector 436 to
produce second generated sequence(s) 438. In various
implementations, the second challenging component 434
can be a discriminator. In additional situations, such as when
the second generative adversarial network 430 is a Wasser-
stein GAN, the second challenging component 434 can
include a critic. The second input vector 436 can include a
random or pseudo-random sequence of numbers.

The second challenging component 434 can generate
second classification output 440 indicating whether the
amino acid sequences produced by the second generating
component 432 satisfy various characteristics. In illustrative
examples, based on similarities and differences between the
second generated sequence(s) 438 and the sequences pro-
vided to the second challenging component 434, such as
amino acid sequences included in the protein sequence data
412, the second challenging component 434 can generate the
second classification output 440 that indicates an amount of
similarity or an amount of difference between the second
generated sequence(s) 238 and comparison sequences pro-
vided to the second challenging component 434. The com-
parison sequences provided to the second challenging com-
ponent 434 can correspond to amino acid sequences
included in second protein sequence data 442. The second
protein sequence data 442 can include amino acid sequences
that can be at least partially different from the amino acid
sequences included in the first protein sequence data 412. In
some illustrative examples, the second protein sequence data
442 can include a subset of the first protein sequence data
412. In implementations, protein sequence filtering can be
applied to the first protein sequence data 412 by analyzing
the first protein data 412 according to one or more criteria.
For example, the second protein sequence data 442 can
correspond to particular types of proteins and/or amino acid
sequences that include regions having specified amino acids
at particular positions. Additionally, the second protein
sequence data 442 can correspond to amino acid sequences
of proteins that have specified biophysical properties. In
various implementations, the second protein sequence data
442 can correspond to amino acid sequences of proteins that
have specified structural properties. Examples of specified
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structural properties can include surface charge of one or
more regions and post translational modifications.

The second challenging component 434 can label the
second generated sequence(s) 438 with a zero and structured
sequences derived from the protein sequence data 442 with
a one. In these situations, the second classification output
440 can include a number from 0 and 1 In additional
examples when the second generative adversarial network
430 is a Wasserstein GAN, the second challenging compo-
nent 434 can implement a distance function that produces an
output that indicates an amount of distance between the
second generated sequence(s) 238 and the proteins included
in the second protein sequence data 442. In implementations
where the second challenging component 434 implements a
distance function, the second classification output 440 can
be a number from - to . In some examples, the amino
acid sequences obtained from the second protein sequence
data 442 can be referred to as ground truth data.

After the filtered sequences 444 have been produced by
the protein sequence filtering 442, the filtered sequences can
be subject to second data preprocessing 446 before being
provided to the second challenging component 434. In
implementations, the filtered sequences 444 can be arranged
according to a classification system before being provided to
the second challenging component 434. The second data
preprocessing 444 can include pairing amino acids included
in the proteins of the second protein sequence data 442 with
numerical values that can represent positions within the
proteins. The numerical values can include a sequence of
numbers having a starting point and an endpoint. The second
data preprocessing 444 can generate second structured
sequences 446 that are provided to the second challenging
component 434. The second structured sequences 446 can
include a matrix indicating amino acids associated with
various positions of a protein. In examples, the second
structured sequences 446 can include a matrix having col-
umns corresponding to different amino acids and rows that
correspond to structure-based positions of proteins. For each
element in the matrix, a 0 can be used to indicate the absence
of an amino acid at the corresponding position and a 1 can
be used to indicate the presence of an amino acid at the
corresponding position. The matrix can also include an
additional column that represents a gap in an amino acid
sequence where there is no amino acid at a particular
position of the amino acid sequence. Thus, in situations
where a position represents a gap in an amino acid sequence,
a 1 can be placed in the gap column with respect to the row
associated with the position where an amino acid is absent.
The second generated sequence(s) 438 can also be repre-
sented using a vector according to a same or similar number
scheme as used for the second structured sequences 446. In
some illustrative examples, the second structured sequences
446 and the second generated sequence(s) 438 can be
encoded using a method that may be referred to as a one-hot
encoding method.

After the second generative adversarial network 430 has
undergone a training process, a modified trained model 448
can be generated that can produce sequences of proteins.
The modified trained model 448 can represent the trained
model 420 after being trained using the second protein
sequence data 442. In examples, the training process for the
second generative adversarial network 430 can be complete
after the function(s) implemented by the second generating
component 432 and the second challenging component 434
converge. The convergence of a function can be based on the
movement of values of model parameters toward particular
values as protein sequences are generated by the second
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generating component 432 and feedback is obtained from
the second challenging component 434. In various imple-
mentations, the training of the second generative adversarial
network 430 can be complete when the protein sequences
generated by the second generating component 432 have
particular characteristics.

Second sequence input 450 can be provided to the modi-
fied trained model 448, and the modified trained model 448
can produce second sequences 452. The second sequence
input 450 can include a random or pseudo-random series of
numbers and the second sequences 452 can include amino
acid sequences that can be sequences of proteins. At opera-
tion 454, the second sequences 452 can be evaluated to
determine whether the second sequences 452 have a speci-
fied set of characteristics. The sequence evaluation 454 can
produce metrics 456 that indicate characteristics of the
second sequences 452, such as biophysical properties of a
protein or a region of a protein and/or the presence or
absence of amino acids located at specified positions. Addi-
tionally, the metrics 456 can indicate an amount of corre-
spondence between the characteristics of the second
sequences 452 and a specified set of characteristics. In some
examples, the metrics 456 can indicate a number of positions
of a second sequence 452 that vary from a sequence pro-
duced by a germline gene of a protein. Further, the sequence
evaluation 454 can determine the presence or absence of
structural features of proteins that correspond to the second
sequences 452.

By continuing to train the trained model 420 as part of the
second generative adversarial network 430, the modified
trained model 448 can be produced that generates amino
acid sequences that are more specifically tailored than those
produced by the trained model 420. For example, the second
generative adversarial network 430 can be training using
filtered amino acid sequences that correspond to proteins
have particular structure features and/or specified biophysi-
cal properties. Thus, once the trained model 420 has been
produced by the first generative adversarial network 402 to
generate amino acid sequences that correspond to proteins,
the modified trained model 448 can be produced as part of
the second generative adversarial network 430 to produce
amino acid sequences of more specific proteins according to
the second protein sequence data 442 provided to the second
generative adversarial network 430.

Additionally, in many situations where it is desired to
produce amino acid sequences of proteins having specific
characteristics, the number of sequences available to train a
generative adversarial network is limited. In these situations,
the accuracy, efliciency, and/or effectiveness of the genera-
tive adversarial network to produce amino acid sequences of
proteins having the specified characteristics may be unsat-
isfactory. Thus, without a sufficient number of amino acid
sequences available to train a generative adversarial net-
work, the amino acid sequences produced by the generative
adversarial network may not have the desired characteris-
tics. By implementing the techniques and systems described
with respect to FIG. 4, a first generative adversarial network
402 can perform part of the process of determining amino
acid sequences that correspond to proteins or that corre-
spond to a broader class of proteins using a first dataset and
the second generative adversarial network 430 can perform
an additional part of the process where amino acid
sequences of proteins having more specific characteristics
are accurately and efliciently generated using a second,
different dataset.

In illustrative examples, the modified model 448 can
produce amino acid sequences that correspond to antibodies
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or portions of antibodies having particular characteristics.
For example, after the first generative adversarial network
402 has produced the trained model 420 to generate amino
acid sequences that have characteristics of antibodies, gen-
erally, the second generative adversarial network 430 can
produce the modified trained model 448 to produce anti-
bodies or portions of antibodies that have at least one of
specified biophysical characteristics, amino acid sequences
that correspond to antibodies or antibody regions related to
a germline gene, or amino acid sequences of antibodies that
have specified structural features, such as particular struc-
ture properties at specified locations. In particular illustra-
tive examples, the trained model 420 can be used to generate
amino acid sequences that correspond to IgG antibodies and
the modified trained model 448 can be used to generate
amino acid sequences that correspond to IgG antibodies
including light chains with variable regions having particu-
lar amino acids at specified positions. In additional illustra-
tive examples, the trained model 420 can be used to generate
amino acid sequences of heavy chains of antibodies and the
modified trained model 448 can be used to generate amino
acid sequences of heavy chains of antibodies that can form
disulfide bonds at specified positions.

While the illustrative example of FIG. 4 illustrates the
training of a model using multiple training sets in a frame-
work that includes two generative adversarial networks. in
additional implementations, the training of a model using
multiple training datasets can also be represented using a
single generative adversarial network. Further, while the
illustrative example of FIG. 4 illustrates the training of a
model using generative adversarial networks with two train-
ing datasets, in various implementations, more than two
datasets can be used to train models using generative adver-
sarial networks according to implementations described
herein.

FIG. 5 is a diagram illustrating an example framework
500 to generate antibody sequences that are variants of a
parent antibody, in accordance with some implementations.
The framework 500 can include a generative adversarial
network 502 that can include a generating component 504
and a challenging component 506. The generating compo-
nent 504 can implement a model to generate amino acid
sequences based on input provided to the generating com-
ponent 504. In various implementations, the model imple-
mented by the generating component 504 can include one or
more functions. In implementations, the generating compo-
nent 504 can utilize a model to produce generated
sequence(s) 508. In various examples, the generating com-
ponent 504 can implement a model to generate amino acid
sequences based on an input vector 510 provided to the
generating component 504 and a parent antibody sequence
512. The training input 510 can include a random or
pseudo-random sequence of numbers of a specified length.
The parent antibody sequence 512 can be provided to the
generating component 504 as a matrix having columns
corresponding to different amino acids and rows that corre-
spond to structure-based positions of proteins. For each
element in the matrix, a 0 can be used to indicate the absence
of an amino acid at the corresponding position and a 1 can
be used to indicate the presence of an amino acid at the
corresponding position. The matrix can also include an
additional column that represents a gap in an amino acid
sequence where there is no amino acid at a particular
position of the amino acid sequence. Thus, in situations
where a position represents a gap in an amino acid sequence,
a 1 can be placed in the gap column with respect to the row
associated with the position where an amino acid is absent.
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The parent antibody sequence 512 can include a base
molecule that the generative adversarial network 502 can
utilize to train a model to produce variant antibody
sequences that correspond to the parent antibody sequence
512.

The challenging component 506 can generate output
indicating whether the amino acid sequences produced by
the generating component 504 satisfy various characteris-
tics. In various implementations, the challenging component
506 can be a discriminator. In additional situations, such as
when the generative adversarial network 502 is a Wasser-
stein GAN, the challenging component 506 can include a
critic. In examples, the challenging component 506 can
generate classification output 514 indicating whether the
amino acid sequences produced by the generating compo-
nent 504 satisfy various characteristics. In illustrative
examples, based on similarities and differences between the
generated sequence(s) 508 and additional sequences pro-
vided to the challenging component 506, such as amino acid
sequences included in antibody sequence data 516, the
challenging component 506 can generate the classification
output 514 to indicate an amount of similarity or an amount
of difference between the generated sequence(s) 508 and
sequences provided to the challenging component 506
included in the antibody sequence data 516. The antibody
sequence data 516 can include amino acid sequences of
antibodies that are obtained from one or more databases that
store antibody sequences. Additionally, the classification
output 514 can indicate an amount of similarity or an amount
of difference between the generated sequence(s) 508 and the
parent antibody sequence 512.

In examples, the challenging component 506 can label the
generated sequence(s) 508 as zero and the structured
sequences obtained from the protein sequence data 516 as 1.
The challenging component 506 can also label the parent
antibody sequence 512 as 1. In these situations, the classi-
fication output 514 can include a first number from O to 1
with respect to one or more amino acid sequences included
in the antibody sequence data 516 and a second number from
0 to 1 with respect to the parent antibody sequence 512. In
additional examples, the challenging component 506 can
implement a distance function that produces an output that
indicates an amount of distance between the generated
sequence(s) 508 and the proteins included in the antibody
sequence data 516. Further, the challenging component 506
can implement a distance function that produces an output
that indicates an amount of distance between the generated
sequence(s) 508 and the parent antibody sequence 512. In
implementations where the challenging component 506
implements a distance function, the classification output 514
can include a first number from —co to o indicating a distance
between the generated sequence(s) 508 and one or more
sequences included in the antibody sequence data 516 and a
second number from - to oo indicating a distance between
the generated sequence(s) 508 and the parent antibody
sequence 512.

In various implementations, the classification output 514
related to the amount of difference or the amount of simi-
larity between the generated sequence(s) 508 and the parent
antibody sequence 512 can be determined using a penalty
function. In particular implementations, the challenging
component 506 can evaluate the generated sequence(s) 508
with respect to the parent antibody sequence 512 in relation
to an amount of similarity between the generated
sequence(s) 508 and the parent antibody sequence 512
and/or an amount of dissimilarity between the generated
sequence(s) 508 and the parent antibody sequence 512. In
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examples, a first threshold amount of dissimilarity between
the generated sequence(s) 508 and the parent antibody
sequence 512 can be specified. Additionally, a second
threshold amount of similarity between the generated
sequence(s) 508 and the parent antibody sequence 512 can
be specified. The challenging component 506 can evaluate
the generated sequence(s) 508 in relation to the parent
antibody sequence 512 based on at least one of the first
threshold amount of dissimilarity or the second threshold
amount of similarity. In implementations, the challenging
component 506 can implement the penalty function based on
the amounts of similarity and/or dissimilarity between the
generated sequence(s) 508 and the parent antibody sequence
512 in relation to the first threshold and/or the second
threshold and utilize the output of the penalty function when
generating the portion of the classification output 514 that
corresponds to the parent antibody sequence 512 with
respect to the generated sequence(s) S08.

The antibody sequences included in the antibody
sequence data 516 can be subject to data preprocessing at
518 wherein the antibody sequences are mapped onto a
classification system 520 before being provided to the
challenging component 506. The classification system 520
can indicate that certain regions of antibodies are to be
represented by particular numbers of positions. For example,
a heavy chain variable region can be represented by 125 to
165 positions, such as 149 positions, within the classification
system 520. In other examples, a heavy chain constant
region can be represented by 110 to 140 positions, such as
123 positions, within the classification system 520. In addi-
tional examples, a hinge region of a heavy chain can be
represented by 110 to 140 positions, such as 123 positions,
within the classification system 520. In situations where an
amino acid sequence of an antibody does not include a
number of amino acids that corresponds to the specified
number of positions for a region of the antibody, the data
preprocessing at 518 can introduce a null value for one or
more positions in the classification system 520. In imple-
mentations, the null regions can correspond to gaps that can
indicate structural information of the antibodies. Thus, the
classification system 520 can accommodate variable num-
bers of amino acids included in various regions of an
antibody. Mapping the antibody sequences of at least a
portion of the antibody sequence data 516 onto the classi-
fication system 520 can generate a standardized dataset that
can be processed by the generative adversarial network 502
and that is independent of the number of amino acids
included in individual regions of the antibodies.

In illustrative examples, the mapping of antibody
sequences onto the classification system 520 taking place at
518 can include determining variable regions and constant
regions of the antibodies. The variable regions and the
constant regions of the antibodies can be determined by
comparing the amino acid sequences included in the anti-
body sequence data 516 with template amino acid sequences
that correspond to the various regions of the antibody. In
particular examples, a position specific scoring matrix
(PSSM) can be generated for each region type to determine
alignment between the portions of the antibody sequences
with the template amino acid sequences for the antibody
regions. In situations where a local alignment is determined
between an antibody sequence and a template sequence,
antibody sequences produced from germline genes can be
used to further determine positioning of individual amino
acids of the antibody sequence within the classification
system 520.
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After the sequences related to the germline genes are used
to identify a portion of an antibody sequence that may
correspond to a particular type of antibody region, an
amount of identity between a particular portion of an anti-
body sequence with a template sequence can be determined.
In situations where a minimum number of amino acids in a
given antibody sequence correspond to a template sequence
and/or where an amount of identity between a template
sequence and a given antibody sequence is at least a thresh-
old amount of identity, the given antibody sequence can be
classified as the particular region corresponding to the
template. In an example, a given antibody sequence can be
classified as being a complementarity determining region
(CDR) of a heavy chain of an antibody. Additionally, indi-
vidual antibody sequences that have been classified as being
related to a particular region can also be assigned a score that
can indicate a likelihood that a given antibody sequence
corresponds to the classification. Portions of antibody
sequences that have overlapping sequences can be filtered
by score such that the highest scoring portion of the antibody
sequence is assigned the classification. Gaps within the
antibody sequences can be determined in situations where
the number of amino acids for a given portion of an antibody
sequence that has a particular classification is less than the
number of positions assigned to classification in the classi-
fication system 520.

Although a particular classification system 520 has been
described with respect to the illustrative example of FIG. 5,
additional classification systems can be used in addition to,
or in the alternative, with respect to the classification system
520. For example, the Kabat classification scheme, the
Chotia classification scheme, the Martin classification
scheme, the Gelfand classification scheme, the IMGT clas-
sification scheme, the Aho classification scheme, combina-
tions thereof, and the like can be utilized to classify amino
acid sequences of antibodies included in the antibody
sequence data 516.

After the antibody sequence data 516 has been mapped
onto the classification system 520 at 518, mapped sequence
data 522 can be provided to the challenging component 506.
The mapped sequence data 522 can include a matrix indi-
cating the positions of amino acids for the regions of an
antibody and indicating the amino acids associated with the
individual positions. In situations where a gap is present in
the amino acid sequence with respect to the classification
system, a null value can be associated with each amino acid
included in the matrix.

After the generative adversarial network 502 has under-
gone a training process, a trained model 524 can be gener-
ated that can produce sequences of proteins. In examples,
the training process for the generative adversarial network
502 can be complete after the function(s) implemented by
the generating component 504 converge. The convergence
of a function can be based on the movement of values of
model parameters toward particular values as antibody
sequences are generated by the generating component 504
and feedback is obtained from the challenging component
506. In various implementations, the training of the genera-
tive adversarial network 502 can be complete when the
antibody sequences produced by the generating component
504 have particular characteristics. To illustrate, the amino
acid sequences generated by the generating component 504
can be analyzed by a software tool that can analyze amino
acid sequences to determine at least one of biophysical
properties of the amino acid sequences, structural features of
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the amino acid sequences, or adherence to amino acid
sequences corresponding to one or more genes of at least one
antibody germline.

Sequence input 526 can be provided to the model 524, and
the model 524 can produce antibody sequences 528. The
sequence input 526 can correspond to random or pseudo-
random series of numbers having a specified length. In
various implementations, the antibody sequences 528 can
include variants of the parent antibody sequence 512. At
530, the antibody sequences 528 can be evaluated to deter-
mine whether the antibody sequences 528 have a specified
set of characteristics. The sequence evaluation 530 can
produce metrics 532 that indicate characteristics of the
antibody sequences 528. Additionally, the metrics 532 can
indicate an amount of correspondence between the charac-
teristics of the antibody sequences 528 and a specified set of
characteristics. In some examples, the metrics 532 can
indicate a number of positions of an amino acid sequence
528 that vary from an amino acid sequence derived from a
germline gene of an antibody.

FIG. 6 is a diagram illustrating an example framework
400 to generate amino acid sequences of antibodies that bind
to a specified antigen, in accordance with some implemen-
tations. The framework 600 can include a generative adver-
sarial network 602 that can include a generating component
604 and a challenging component 606. The generative
adversarial network 602 can include a conditional generative
adversarial network. The generating component 604 can
implement a model to generate amino acid sequences based
on input provided to the generating component 604. In
various implementations, the model implemented by the
generating component 604 can include one or more func-
tions. In implementations, the generating component 604
can utilize a model to produce generated sequence(s) 608.

The generating component 604 can implement a model to
generate amino acid sequences based on an input vector 610
provided to the generating component 604 and an antigen
sequence 612. The input vector 610 can include a random or
pseudo-random sequence of numbers of a specified length.
The antigen sequence 612 can be provided to the generating
component 604 as a matrix having columns corresponding
to different amino acids and rows that correspond to struc-
ture-based positions of proteins. For each element in the
matrix, a 0 can be used to indicate the absence of an amino
acid at the corresponding position and a 1 can be used to
indicate the presence of an amino acid at the corresponding
position. The matrix can also include an additional column
that represents a gap in an amino acid sequence where there
is no amino acid at a particular position of the amino acid
sequence. Thus, in situations where a position represents a
gap in an amino acid sequence, a 1 can be placed in the gap
column with respect to the row associated with the position
where an amino acid is absent. The antigen sequence 612
can correspond to an antigen to which antibodies having
amino acid sequences produced by the generating compo-
nent 604 can bind. In various examples, the antigen
sequence 612 can correspond to an antigen that has one or
more epitope regions to which antibodies can bind. In one or
more examples, the generative adversarial network 602 can
produce amino acid sequences of antibodies to bind to the
one or more epitope regions.

The challenging component 606 can generate output
indicating whether the amino acid sequences produced by
the generating component 604 have various characteristics.
In implementations, the challenging component 606 can be
a discriminator of the generative adversarial network 602.
The challenging component 606 can generate classification



US 11,587,645 B2

27

output 614 indicating whether the amino acid sequences
produced by the generating component 604 satisfy one or
more criteria. In illustrative examples, based on similarities
and differences between the generated sequence(s) 608 and
additional sequences provided to the challenging component
606 as training data, such as amino acid sequences included
in the antibody-antigen sequence data 616, the challenging
component 606 can generate the classification output 614 to
indicate an amount of similarity or an amount of difference
between the generated sequence(s) 608 and sequences pro-
vided to the challenging component 606 from the antibody-
antigen interaction data 616.

The antibody-antigen interaction data 616 can be obtained
from one or more databases that store data related to the
binding of antibodies to antigens. The antibody-antigen
interaction data 616 can store amino acid sequences of
antibodies and amino acid sequences of the antigens that are
bound by the antibodies. The antibody-antigen interaction
data 616 can also include information regarding at least one
of secondary structures or tertiary structures of individual
antibodies and individual antigens. In various examples, the
antibody-antigen interaction data 616 can include informa-
tion corresponding to at least one of secondary structures or
tertiary structures of individual antibodies and individual
antigens when they are bound to each other. Additionally,
the antibody-antigen interaction data 616 can include amino
acid sequences of epitope regions of antigens and amino
acid sequences of corresponding binding regions of anti-
bodies and at least one of the binding strength or the
probability of binding by the various antibody regions to the
respective epitope regions. In illustrative examples, the
antibody-antigen interaction data 616 can indicate a number
of positions of antigens that bind to one or more positions of
the antibodies via non-covalent intermolecular interactions/
atomic interactions/chemical interactions, such as van der
Waals forces, hydrogen bonding, electrostatic interactions,
hydrophobic forces, combinations thereof, and the like.

In illustrative examples, the portions of the antibody-
sequence data 616 provided to the challenging component
606 in relation to the antigen sequence 612 can include
amino acid sequences of antibodies that have at least a
minimum binding affinity with respect to the antigen
sequence 612. A binding affinity of a portion of an amino
acid sequence of an antibody with respect to the antigen
sequence 612 can be determined based on a binding affinity
of the portion of the amino acid sequence of the antibody
with respect to antigens that have at least a threshold
similarity with respect to the antigen sequence 612. For
example, the antigen sequence 612 can be compared to
amino acid sequences of antigens stored as part of the
antibody-antigen interaction data 616. Antigens having
amino acid sequences with at least a threshold amount of
identity in relation to the antigen sequence 612 can be
determined. Amino acid sequences of antibodies can then be
identified that bind to the antigens and these amino acid
sequences can be sent as input to the challenging component
606. In additional examples, amino acid sequences of
epitope regions of antigens included in the antibody-antigen
interaction data 616 can be compared with the antigen
sequence 612. In these situations, epitope regions of anti-
gens included in the antibody-antigen interaction data 616
that have at least a threshold amount of identity with one or
more portions of the antigen sequence 612 can be deter-
mined. Antibodies that bind to these epitope regions can then
be identified and sent as input to the challenging component
606.
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The challenging component 606 can produce classifica-
tion output 614 that labels a generated sequence 608 based
on an amount of correspondence between the generated
sequence 608 and training data provided to the challenging
component 606. The training data can include at least a
portion of the amino acid sequences included in the anti-
body-antigen interaction data 616. The classification output
614 can be based on a type of generative adversarial network
associated with the generative adversarial network 602. For
example, for a first type of generative adversarial network,
the challenging component 606 can generate a classification
output 614 of 1 for a generated sequence 608 that has at least
a threshold amount of correspondence with respect to train-
ing data provided to the challenging component 820. Also,
for the first type of generative adversarial network, the
challenging component 606 can generate a classification
output of O for a generated sequence 608 that has less than
a threshold amount of correspondence with respect to train-
ing data provided to the challenging component 606. In
various examples, for the first type of generative adversarial
network, the challenging component 606 can generate clas-
sification output 614 that labels a generated sequence 608
using a numerical scale from 0 to 1 based on an amount of
similarity between the generated sequence 608 and amino
acid sequences included in training data provided to the
challenging component 606.

Additionally, in situations where the generative adver-
sarial network 602 implements a second type of generative
adversarial network, such as a Wasserstein GAN, the chal-
lenging component 606 can implement a distance function
that produces a classification output 614 that indicates an
amount of distance between the generated sequences 608
and amino acid sequences included in training data provided
to the challenging component 606. For example, the chal-
lenging component 606 can produce a classification output
614 that includes a number from —co to oo that indicates a
distance between a generated sequence 608 and at least a
portion of the amino acid sequences included in the anti-
body-antigen interaction data 616. In various examples, the
training data obtained from the antibody-antigen interaction
data 616 can be referred to as ground truth data.

The amino acid sequences obtained from the antibody-
antigen interaction data 616 can be subject to data prepro-
cessing at 618. The amino acid sequences obtained from the
antibody-antigen interaction data 616 can include at least
one of amino acid sequences of antibodies or amino acid
sequences of antigens. The amino acid sequences can be
mapped onto a classification system as part of the data
preprocessing 618 before being provided to the challenging
component 606. For example, the classification system can
indicate that certain regions of antibodies are to be repre-
sented by particular numbers of positions. In illustrative
implementations, the classification system can be the same
as or similar to the classification system 520 described with
respect to FIG. 5. In various examples, the Kabat classifi-
cation scheme, the Chotia classification scheme, the Martin
classification scheme, the Gelfand classification scheme, the
IMGT classification scheme, the Aho classification scheme,
combinations thereof, and the like can be utilized to classify
amino acid sequences of antibodies included in the anti-
body-antigen interaction data 616. Mapping at least a por-
tion of the amino acid sequences included in the antibody-
antigen interaction data 616 onto a classification system can
generate a standardized dataset that can be processed by the
generative adversarial network 602 and that is independent
of the number of amino acids included in individual regions
of the antibodies. After amino acid sequences obtained from
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the antibody-antigen interaction data 616 have been through
the preprocessing 618, the antibody sequence data 620 that
corresponds to the amino acid sequences can be sent to the
challenging component 608.

Subsequent to the generative adversarial network 602
undergoing a training process, a trained model 622 can be
generated that can produce sequences of antibodies. In
examples, the training process for the generative adversarial
network 602 can be complete after the function(s) imple-
mented by the generating component 604 converge. The
convergence of a function can be based on the movement of
values of model parameters toward particular values as
antibody sequences are generated by the generating compo-
nent 604 and feedback is obtained from the challenging
component 606. In various implementations, the training of
the generative adversarial network 602 can be complete
when the antibody sequences produced by the generating
component 604 have particular characteristics. To illustrate,
the amino acid sequences generated by the generating com-
ponent 604 can be analyzed by a software tool that can
determine at least one of biophysical properties of the amino
acid sequences, structural features of the amino acid
sequences, or adherence to amino acid sequences corre-
sponding to one or more genes of at least one antibody
germline.

Sequence input 624 can be provided to the trained model
622, and the trained model 622 can produce antibody
sequences 626. The sequence input 624 can correspond to a
random or pseudo-random series of numbers having a
specified length. In illustrative examples, the sequence input
624 can include the antigen sequence 612. In additional
examples, the sequence input 624 can include information
indicating interactions between at least portions of one or
more regions of one or more antibodies and portions of at
least one or more regions of one or more antigens. At 628,
the antibody sequences 626 can be evaluated to determine
whether the antibody sequences 626 have a specified set of
characteristics. For example, the sequence evaluation 628
can produce metrics 630 that indicate characteristics of the
antibody sequences 626. Additionally, the metrics 630 can
indicate an amount of correspondence between the charac-
teristics of the antibody sequences 626 and a specified set of
characteristics. The metrics 630 can also indicate character-
istics, such as a number of hydrophobic amino acids
included in an antibody 626 sequence, a number of posi-
tively charged amino acids included in an antibody sequence
626, a number of negatively charged amino acids included
in an antibody sequence 626, a measure of a biophysical
property of an antibody having an antibody sequence 626, a
level of expression of an antibody having an antibody
sequence 626, or one or more combinations thereof. In some
examples, the metrics 630 can correspond to an amount of
binding by an antibody to an antigen, interactions between
an antibody and an antigen, an amount of interaction
between an antigen and an amino acid sequence of an
antibody derived from a germline gene.

FIG. 7 is a diagram illustrating an example framework
700 to generate multiple libraries of proteins and to combine
the protein libraries to generate additional proteins, in accor-
dance with some implementations. The framework 700 can
include a first generative adversarial network 702 and a
second generative adversarial network 704. The first gen-
erative adversarial network 702 can be trained and generate
a model based on first protein sequences 706. Additionally,
the second generative adversarial network 704 can be
trained and generate an additional model based on second
protein sequences 708. In various implementations, the first
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proteins sequences 706 and the second protein sequences
708 can include the same amino acid sequences. In addi-
tional implementations, the first protein sequences 706 can
include at least one amino acid sequence that is different
from the second protein sequences 708.

The first generative adversarial network 702 can produce
a number of amino acid sequences of proteins that are
included in a first protein sequence library 710. In addition,
the second generative adversarial network 704 can produce
a number of amino acid sequences that are included in a
second protein sequence library 712. At least a portion of the
amino acid sequences included in the first protein sequence
library 710 can be different from the amino acid sequences
included in the second protein sequence library 712. At 714,
the first protein sequence library 710 and the second protein
sequence library 712 can be combined to produce combined
protein sequences 716.

At 718, the combined protein sequences 716 can be
evaluated according to one or more criteria 720. For
example, the combined protein sequences can be evaluated
to determine whether the combined protein sequences 718
have particular regions of amino acid sequences, are asso-
ciated with amino acid sequences that have specified bio-
physical properties, and/or are associated with amino acid
sequences that have specified tertiary structures. In various
implementations, the combined protein sequences 716 can
be evaluated based on amino acid sequences of proteins
derived from genes of a germline.

After the combined protein sequences 716 have been
evaluated at 718, a combined protein sequence library 722
can be produced. The combined protein sequence library
722 can include at least a portion of the combined protein
sequences 716. In particular implementations, the combined
protein sequences 716 can be filtered according to the
criteria 720 such that specified protein sequences included in
the combined protein sequences are included in the com-
bined protein sequence library.

In illustrative examples, the first protein sequence library
710 can include amino acid sequences that correspond to
heavy chain regions of antibodies and the second protein
sequence library 712 can include amino acid sequences that
correspond to light chain regions of antibodies. In these
situations, the heavy chain regions and the light chain
regions can be combined to generate whole antibody amino
acid sequences including both heavy chain regions and light
chain regions. In various implementations, an additional
generative adversarial network can be generated that can
combine the amino acid sequences corresponding to the
heavy chain regions with the amino acid sequences corre-
sponding to the light chain regions.

FIG. 8 is a diagram illustrating an additional example
framework 800 to generate amino acid sequences of anti-
bodies using separately generated amino acid sequences of
paired antibody heavy chains and light chains, in accordance
with some implementations. The framework 800 can include
a generative adversarial network 802. The generative adver-
sarial network 802 can implement one or more neural
network technologies. For example, the generative adver-
sarial network 802 can implement one or more recurrent
neural networks. Additionally, the generative adversarial
network 802 can implement one or more convolutional
neural networks. In certain implementations, the generative
adversarial network 802 can implement a combination of
recurrent neural networks and convolutional neural net-
works.

The generative adversarial network 802 can include a
light chain generating component 804 and a heavy chain
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generating component 806. The light chain generating com-
ponent 804 can implement a first model to generate data
corresponding to amino acid sequences of light chains of
antibodies. In addition, the heavy chain generating compo-
nent 806 can implement a second model to generate data
corresponding to amino acid sequences of heavy chains of
antibodies. The light chain generating component 804 can
implement a first model to generate amino acid sequences of
light chains of antibodies based on first input data 808
provided to the light chain generating component 804. The
heavy chain generating component 806 can implement a
second model to generating amino acid sequences of heavy
chains of antibodies based on second input data 810. The
first input data 808 can include first noise data generated by
a random number generator or a pseudo-random number
generator. The second input data 810 can include second
noise data generated by a random number generator or a
pseudo-random number generator. In various implementa-
tions, the first model implemented by the light chain gen-
erating component 804 can include one or more first func-
tions that each include one or more first variables having
respective first weights. The second model implemented by
the heavy chain generating component 806 can include one
or more second functions that each include one or more
second variables having respective second weights.

The light chain generating component 804 can implement
a first model to produce light chain sequences 812 based on
the first input data 808. The light chain sequences 812 can
comprise data corresponding to amino acids that are located
at positions of an antibody light chains. The light chain
sequences 812 can include sequences of amino acids of
antibody light chains that are encoded according to one or
more encoding schemes. In various examples, the light chain
sequences 812 can include data corresponding to amino
acids at individual positions of antibody light chains that is
encoded according to a schema. In one or more illustrative
examples, the light chain sequences 812 can include amino
acid sequences of antibody light chains that are encoded
according to a one-hot encoding scheme.

The heavy chain generating component 806 can imple-
ment a second model to produce heavy chain sequences 814
based on the second input data 810. The heavy chain
sequences 814 can comprise data corresponding to amino
acids that are located at positions of antibody heavy chains.
The heavy chain sequences 814 can include sequences of
amino acids of antibody light chains that are encoded
according to one or more encoding schemes. In various
examples, the heavy chain sequences 814 can include data
corresponding to amino acids at individual positions of
antibody heavy chains that is encoded according to a
schema. In one or more illustrative examples, the heavy
chain sequences 814 can include amino acid sequences of
antibody heavy chains that are encoded according to a
one-hot encoding scheme.

The light chain sequences 812 and the heavy chain
sequences 814 can be provided to a sequence combining
component 816. The sequence combining component 816
can combine at least one light chain sequence 812 and at
least one heavy chain sequence 814 to generate a combined
antibody sequence 818. In various implementations, the
sequence combining component 816 can combine a single
light chain sequence 812 with a single heavy chain sequence
814. A combined antibody sequence 818 can include data
corresponding to amino acids located at positions of one or
more light chain sequences 812 and one or more heavy chain
sequences 814. In one or more examples, the sequence
combining component 816 can generate a combined anti-
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body sequence 818 by concatenating one or more light chain
sequences 812 and one or more heavy chain sequences 814.
For example, the sequence combining component 816 can
add a first string of alphanumeric characters representative
of an antibody light chain sequence to a second string of
alphanumeric characters representative of an antibody heavy
chain sequence to generate a combined antibody sequence
818. The combined antibody sequence 818 can include a
first portion that corresponds to a light chain sequence 812
and a second portion that corresponds to a heavy chain
sequence 814. For example, a first number of positions of a
combined antibody sequence 818 can correspond to amino
acids of a light chain sequence 812 and a second number of
positions of the combined antibody sequence 818 that are
after the first number of positions can correspond to a heavy
chain sequence 814. In additional examples, a first number
of positions of a combined antibody sequence 818 can
correspond to amino acids of a heavy chain sequence 814
and a second number of positions of the combined antibody
sequence 818 that are after the first number of positions can
correspond to a light chain sequence 812. In various imple-
mentations, the combined antibody sequence 818 can cor-
respond to amino acids of one or more light chain sequences
812 and one or more heavy chain sequences 814 arranged
according to a schema.

The generative adversarial network 802 can include a
challenging component 820. The challenging component
820 can generate output indicating that the combined anti-
body sequences 818 satisfy or do not satisfy one or more
characteristics. The challenging component 820 can produce
classification output 822 that can be provided to the light
chain generating component 804 and the heavy chain gen-
erating component 806. The challenging component 820 can
evaluate the combined antibody sequences 818 with respect
to training data that comprises the antibody sequence data
824. The challenging component 820 can compare the
combined antibody sequences 818 generated by the
sequence combining component 816 with at least a portion
of the amino acid sequences included in the antibody
sequence data 824. The classification output 822 generated
based on the comparisons can indicate an amount of corre-
spondence between a combined antibody sequence 818 with
respect to at least a portion of the amino acid sequences
included in the antibody sequence data 824. For example,
based on similarities and differences between a combined
antibody sequence 818 and at least a portion of the amino
acid sequences included in the antibody sequence data 824,
the classification output 822 generated by the challenging
component 820 can indicate an amount of similarity or an
amount of difference between the combined antibody
sequence 818 and at least a portion of the amino acid
sequences included in the antibody sequence data 824.

The challenging component 820 can produce classifica-
tion output 822 that labels a combined antibody sequence
818 based on an amount of correspondence between the
combined antibody sequence 818 and training data provided
to the challenging component 820. The training data can
include at least a portion of the amino acid sequences
included in the antibody sequence data 824. The classifica-
tion output 822 can be based on a type of generative
adversarial network associated with the generative adver-
sarial network 802. For example, for a first type of genera-
tive adversarial network, the challenging component 820
can generate a classification output 822 of 1 for a combined
antibody sequence 818 that has at least a threshold amount
of correspondence with respect to training data provided to
the challenging component 820. Also, for the first type of
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generative adversarial network, the challenging component
820 can generate a classification output of 0 for a combined
antibody sequence 818 that has less than a threshold amount
of correspondence with respect to training data provided to
the challenging component 820. In various examples, for the
first type of generative adversarial network, the challenging
component 820 can generate classification output 822 that
labels a combined antibody sequence 818 using a numerical
scale from O to 1 based on an amount of similarity between
the combined antibody sequence 818 and amino acid
sequences included in training data provided to the chal-
lenging component 820.

Additionally, in situations where the generative adver-
sarial network 802 implements a second type of generative
adversarial network, such as a Wasserstein GAN, the chal-
lenging component 820 can implement a distance function
that produces a classification output 822 that indicates an
amount of distance between the combined antibody
sequences 818 and amino acid sequences included in train-
ing data provided to the challenging component 820. For
example, the challenging component 820 can produce a
classification output 822 that includes a number from - to
o that indicates a distance between a combined antibody
sequence 818 and at least a portion of the amino acid
sequences included in the antibody sequence data 824. In
various examples, the training data obtained from the anti-
body sequence data 824 can be referred to as ground truth
data.

The amino acid sequences included in the antibody
sequence data 824 can be subject to data preprocessing 826
before being provided to the challenging component 820. In
implementations, the data preprocessing 826 can include
arranging the antibody sequence data 824 according to a
classification system before being provided to the challeng-
ing component 820. For example, the data preprocessing
826 can include pairing amino acids included in the amino
acid sequences of the antibody sequence data 824 with
numerical values that can represent structure-based posi-
tions within the antibodies. The numerical values can
include a sequence of numbers having a starting point and an
ending point. In an illustrative example, a T can be paired
with the number 43 indicating that a Threonine molecule is
located at a structure-based position 43 of a specified
antibody.

The output produced by the data preprocessing 826 can
include structured sequences 828. The structured sequences
828 can include a matrix indicating amino acids associated
with various positions of an antibody. In examples, the
structured sequences 828 can include a matrix having col-
umns corresponding to different amino acids and rows that
correspond to structure-based positions of antibodies. For
each element in the matrix, a O can be used to indicate the
absence of an amino acid at the corresponding position and
a 1 can be used to indicate the presence of an amino acid at
the corresponding position. In situations where a position
represents a gap in an amino acid sequence, the row asso-
ciated with the position can comprise zeroes for each
column. The combined antibody sequence(s) 818 can also be
represented using a vector according to a same or similar
number scheme as used for the structured sequences 828. In
some illustrative examples, the structured sequences 828
and the combined antibody sequence(s) 818 can be encoded
using a method that may be referred to as a one-hot encoding
method. In various implementations, the structured
sequences 828 can include an amino acid sequence of an
antibody light chain followed by an amino acid sequence of
an antibody heavy chain. In additional implementations, the
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structured sequences 828 can include an amino acid
sequence of an antibody heavy chain followed by an amino
acid sequence of an antibody light chain. The arrangement
of antibody light chains and antibody heavy chains in the
structured sequences 828 can correspond to the arrangement
of antibody light chains and antibody heavy chains included
in the combined antibody sequences 818.

In various examples, training of the light chain generating
component 804 and the heavy chain generating component
806 can take place asynchronously. For example, the train-
ing of the heavy chain component 806 may cease for a
period of time while training of the light chain generating
component 804 continues. In one or more examples, the
light chain generating component 804 and the heavy chain
generating component 806 can train concurrently for a
period of time. During this period of time, the training of the
heavy chain generating component 806 may progress faster
than training of the light chain generating component 804. In
these situations, the training of the heavy chain generating
component 806 may cease for a period of time that the light
chain generating component 804 continues to train. In some
examples, sequences generated by the heavy chain generat-
ing component 806 may be evaluated at various points in
time to determine a metric with regard to quality of the
amino acid sequences generated by the heavy chain gener-
ating component 806. In various examples, the training of
the heavy chain generating component 806 may cease when
the metric satisfies one or more threshold metrics. The light
chain generating component 804 may continue to train until
the sequences produced by the light chain generating com-
ponent 804 satisfy the one or more threshold metrics. After
sequences from both the light chain generating component
804 and the heavy chain generating component 806 satisfy
the one or more threshold metrics, the light chain generating
component 804 and the heavy chain generating component
806 can continue to train. In one or more examples, training
of the light chain generating component 804 and the heavy
chain generating component 806 can train until one or more
metrics used to evaluate the sequences produced by the light
chain generating component 804 and the heavy chain gen-
erating component 806 diverge by at least a threshold
amount.

In one or more illustrative examples, the training of the
heavy chain generating component 806 can implement
hobbled weights such that the training of the light chain
generating component 804 and the training of the heavy
chain generating component 806 proceed at relatively simi-
lar rates. Additionally, the training of the heavy chain
generating component 806 may proceed with slower gradi-
ents such that the training of the light chain generating
component 804 and the training of the heavy chain gener-
ating component 806 proceed at relatively similar rates.

After the generative adversarial network 802 has under-
gone a training process, a trained model 830 can be gener-
ated that can produce amino acid sequences of antibodies.
The trained model 830 can include the light chain generating
component 804 and the heavy chain generating component
806 after a training process using the antibody sequence data
824. In examples, the training process for the generative
adversarial network 802 can be complete after the classifi-
cation output 822 indicates at least a threshold amount of
correspondence between the combined antibody sequences
818 and the amino acid sequences included in the antibody
sequence data 824. In additional implementations, the train-
ing of the generative adversarial network 802 can be com-
plete when the combined antibody sequences 818 have
particular characteristics. To illustrate, the amino acid
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sequences generated by the sequence combining component
816 can be analyzed by a software tool that can analyze
amino acid sequences to determine at least one of biophysi-
cal properties of the amino acid sequences, structural fea-
tures of the amino acid sequences, or adherence to amino
acid sequences corresponding to one or more protein ger-
mlines. The characteristics of the combined antibody
sequences 818 determined by the analysis of the software
tool in relation to specified characteristics can be used to
determine whether or not the training of the generative
adversarial network 802 is complete.

Sequence input 832 can be provided to the trained model
830, and the trained model 830 can produce a combined
antibody sequence library 834. The sequence input 832 can
correspond to random or pseudo-random series of numbers
that can be used to produce the combined antibody sequence
library 834. The combined antibody sequence library 834
can include amino acid sequences of antibodies that include
at least one light chain and at least one heavy chain that
correspond to the individual antibodies included in the
combined antibody sequence library 834. The amino acid
sequences included in the combined antibody sequence
library 834 that are produced by the trained model 830 can
be represented as a matrix structure that is the same as or
similar to the matrix structure used to represent the struc-
tured sequences 828 and/or the combined antibody
sequence(s) 818. In various implementations, the matrices
produced by the trained model 830 that comprise the amino
acid sequences included in the combined antibody sequence
library 834 can be decoded to produce a string of amino
acids that correspond to the sequence of an antibody.

In some implementations, the amino acid sequences
included in the combined antibody sequence library 834 can
be subject to one or more filtering operations. The one or
more filtering operations can parse the amino acid sequences
included in the combined antibody sequence library for one
or more of the sequences that correspond to one or more
specified characteristics. For example, the amino acid
sequences included in the combined antibody sequence
library 834 can be analyzed to identify sequences that have
specified amino acids at particular positions. The amino acid
sequences included in the combined antibody sequence
library 834 can also be analyzed to identify one or more
sequences that have one or more particular strings of amino
acids at one or more locations. In various implementations,
the amino acid sequences included in the combined antibody
sequence library 834 can be analyzed to identify one or more
sequences that have a set of biophysical properties based on
similarities between at least one of the sequences included in
the combined antibody sequence library 834 and amino acid
sequences of additional antibodies that are known to have
the set of biophysical properties.

In one or more implementations, amino acid sequences
generated by the trained model 830 and/or amino acid
sequences generated during the training of the light chain
generating component 804 and the heavy chain generating
component 806 may be evaluated according to one or more
criteria. For example, amino acid sequence generated the
trained model 830 and/or amino acid sequences generated
during the training of the light chain generating component
804 and the heavy chain generating component 806 may be
evaluated based on at least one of agreement with amino
acid sequences produced in relation to one or more germline
genes, a measure of immunogenicity of the amino acid
sequences, or agreement with CDR H3 amino acid
sequences. A PCA model may be used to determine when to
stop training at least one of the light chain generating
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component 804 or the heavy chain generating component
806 in relation to correspondence with CDR H3 regions. In
various examples, the measure of immunogenicity can cor-
respond to MHC Class II binding affinity.

FIG. 9 is a diagram illustrating a framework 900 that
implements the use of transfer learning techniques to gen-
erate amino acid sequences of antibodies from amino acid
sequences of paired antibody heavy chains and light chains,
in accordance with some implementations. The framework
900 can include a first generative adversarial network 902.
The first generative adversarial network 902 can include a
first light chain generating component 904, a first heavy
chain generating component 906, a first challenging com-
ponent 908, and a first sequence combining component 910.
In various implementations, the first challenging component
908 can be a discriminator. The first light chain generating
component 904 can implement a model to generate amino
acid sequences of antibody light chains based on input
provided to the first light chain generating component 904.
The first heavy chain generating component 906 can imple-
ment a model to generate amino acid sequences of antibody
heavy chains based on input provided to the first heavy chain
generating component 906. The first light chain generating
component 904 and the first heavy chain generating com-
ponent 906 can use input data 912 to generate amino acid
sequences. The input data 912 can include a vector produced
using a random number generator or a pseudo-random
number generator. In illustrative examples, the input data
912 can include a noise signal that includes a series of
numbers.

The first sequence combining component 910 can com-
bine amino acid sequences generated by the first light chain
generating component 904 with amino acid sequences gen-
erated by the first heavy chain generating component 906 to
produce combined antibody sequences. The first sequence
combining component 910 can provide the combined anti-
body sequences to the first challenging component 908. The
first challenging component 908 can then generate output
indicating whether the combined antibody sequences satisfy
various characteristics. The output produced by the first
challenging component 908 can be provided as feedback to
at least one of the first light chain generating component 904
and the first heavy chain generating component 906. In this
way, one or more models implemented by the first light
chain generating component 904 and/or the first heavy chain
generating component 906 can be modified based on the
feedback provided by the first challenging component 908.
In various implementations, the first challenging component
908 can compare the amino acid sequences produced by the
first sequence combining component 910 with amino acid
sequences of antibodies that correspond to training data for
the first generative adversarial network 902 and generate an
output indicating an amount of correspondence between the
amino acid sequences produced by the first sequence com-
bining component 910 and the amino acid sequences of
antibodies included in the training data. The training data
can include antibody sequence data 914. The antibody
sequence data 914 can correspond to amino acid sequences
of'a number of antibodies. For a given antibody, the antibody
sequence data 914 can include a pairing of an antibody light
chain and an antibody heavy chain. In illustrative examples,
the antibody sequence data 914 can include amino acid
sequences of antibodies produced by one or more mammals.
The antibody sequence data 914 can also include amino acid
sequences of one or more isotypes of classes of antibodies,
such as IgA antibodies, IgD antibodies, IgE antibodies, 1gG
antibodies, and/or IgM antibodies.
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The first generative adversarial network 902 can be
trained in a same or similar manner described with respect
to the generative adversarial network 802 of FIG. 6. For
example, at least a portion of the antibody sequence data 914
can be fed into the first challenging component 908 and
compared against output produced by the first sequence
combining component 910. The output produced by the first
sequence combining component 910 can be based on amino
acid sequences of antibody light chains generated by the first
light chain generating component 904 and amino acid
sequences of antibody heavy chains generated by the first
heavy chain generating component 906. A trained model 916
can be produced in response to iteratively determining
parameters and/or weights with respect to one or more
functions implemented by at least one of the first light chain
generating component 904 or the first heavy chain generat-
ing component 906. To illustrate, the trained model 916 can
include a trained light chain generating component 918 and
a trained heavy chain generating component 920.

In various examples, the amino acid sequences generated
by the trained model 916 can be refined further. To illustrate,
the trained model 916 can be modified by being subjected to
another training process using a different set of training data
than the training data used in the initial training process. For
example, the data used for additional training of the trained
model 916 can include a subset of the data used to initially
produce the trained model 916. In additional examples, the
data used for additional training of the trained model 916 can
include a different set of data than the data used to initially
produce the trained model 916. In illustrative examples, the
trained model 916 can be further refined to generate amino
acid sequences of antibodies having one or more specified
attributes. The one or more specified attributes can include
values of one or more biophysical properties and/or one or
more levels of expression. In these scenarios, the trained
model 916 can be further trained using a training dataset that
includes amino acid sequences of antibodies that have the
one or more specified attributes.

In the illustrative example of FIG. 9, the refinement of the
trained model 916 can be represented by training a second
generative adversarial network 922 that includes the training
model 916. For example, the second generative adversarial
network 922 can include a second light chain generating
component 924 that initially corresponds to the trained light
chain generating component 918 and a second heavy chain
generating component 926 that initially corresponds to the
trained heavy chain generating component 920. In various
implementations, the second light chain generating compo-
nent 924 can include the trained light chain generating
component 918 after one or more modifications have been
made to the trained light chain generating component 918.
Additionally, the second heavy chain generating component
926 can include the trained heavy chain generating compo-
nent 920 after one or more modifications have been made to
the trained heavy chain generating component 920. For
example, modifications can be made to the trained light
chain generating component 918 in relation to the architec-
ture of the trained light chain generating component 918,
such as the addition of one or more hidden layers or changes
to one or more network filters. The second generative
adversarial network 922 can also include a second sequence
combining component 928 and a second challenging com-
ponent 930. The second challenging component 930 can
include a discriminator.

First additional input data 932 can be provided to the
second light chain generating component 924 and the second
light chain generating component 924 can produce one or
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more light chain sequences 934. The first additional input
data 932 can include a random or pseudo-random sequence
of numbers that the second light chain generating compo-
nent 924 uses to produce the light chain sequences 934.
Further, second additional input data 936 can be provided to
the second heavy chain generating component 926 and the
second heavy chain generating component 926 can produce
one or more heavy chain sequences 938. The second addi-
tional input data 932 can include a random or pseudo-
random sequence of numbers that the second heavy chain
generating component 926 uses to produce the heavy chain
sequences 938. The second sequence combining component
928 can combine one or more light chain sequences 934 with
one or more heavy chain sequences 938 to produce one or
more combined sequences 940. The one or more combined
sequences 940 can correspond to amino acid sequences of
antibodies that include at least one light chain and at least
one heavy chain.

The second challenging component 930 can generate
classification output 942 indicating that the amino acid
sequences included in the combined sequences 940 satisfy
various characteristics or that the amino acid sequences
included in the combined sequences 940 do not satisfy
various characteristics. In illustrative examples, the second
challenging component 930 can generate the classification
output 942 based on similarities and differences between one
or more combined sequences 940 and amino acid sequences
provided to the second challenging component 930 as train-
ing data. The classification output 942 can indicate an
amount of similarity or an amount of difference between the
combined sequences 940 and the training data amino acid
sequences provided to the second challenging component
930.

The amino acid sequences provided to the second chal-
lenging component 930 as training data can be included in
additional antibody sequence data 944. The additional anti-
body sequence data 944 can include amino acid sequences
of proteins that have one or more specified characteristics.
For example, the additional antibody sequence data 944 can
include amino acid sequences of antibodies having a thresh-
old level of expression in humans. In additional examples,
the additional antibody sequence data 944 can include amino
acid sequences of antibodies having one or more biophysical
properties and/or one or more structural properties. To
illustrate, the antibodies included in the additional antibody
sequence data 944 can have negatively charged regions,
hydrophobic regions, a relatively low probability of aggre-
gation, a specified percentage of high molecular weight
(HMW), melting temperature, one or more combinations
thereof, and the like. In one or more additional examples, the
additional antibody sequence data 944 may include binding
affinity information that can be used in transfer learning. In
one or more illustrative examples, the additional antibody
sequence data 944 can correspond to antibodies that have at
least a threshold amount of binding affinity with respect to
one or more molecules, such as MHC Class II molecules. In
various examples, the additional antibody sequence data 944
can include a subset of the antibody sequence data 914 used
to produce the trained model 916. By providing amino acid
sequences to the second challenging component 930 that
have one or more specified characteristics, the second light
chain generating component 924 and the second heavy chain
generating component 926 can be trained to produce amino
acid sequences of antibodies that have at least a threshold
probability of having the one or more specified character-
istics.
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Additionally, in many situations where it is desired to
produce amino acid sequences of antibodies having one or
more specified characteristics, the number of sequences
available to train a generative adversarial network can be
limited. In these situations, the accuracy, efficiency, and/or
effectiveness of the generative adversarial network to pro-
duce amino acid sequences of antibodies having the speci-
fied characteristics may be unsatisfactory. Thus, without a
sufficient number of amino acid sequences available to train
a generative adversarial network, the amino acid sequences
produced by the generative adversarial network may not
have the desired characteristics. By implementing the tech-
niques and systems described with respect to FIG. 9, a first
generative adversarial network 902 can perform part of the
process of training a model to produce antibodies having the
one or more specified characteristics and the second gen-
erative adversarial network 922 can perform additional
training to generate amino acid sequences of antibodies
having the one or more specified characteristics in an
accurate and efficient manner.

Before being provided to the second challenging compo-
nent 930, the amino acid sequences included in the addi-
tional antibody sequence data 944 can be subject to data
preprocessing 946 that produces structured sequences 948.
For example, the additional protein sequence data 944 can
be arranged according to a classification system before being
provided to the second challenging component 930. The data
preprocessing 946 can include pairing amino acids included
in the amino acid sequences of antibodies included in the
additional protein sequence data 944 with numerical values
that can represent structure-based positions within the anti-
bodies. The combined sequence(s) 940 can also be repre-
sented using a vector according to a same or similar number
scheme as used for the structured sequences 948.

After the second generative adversarial network 922 has
undergone a training process, a modified trained model 950
can be generated that can produce amino acid sequences of
antibodies. The modified trained model 950 can represent
the trained model 916 after being trained using the addi-
tional protein sequence data 944. Additional sequence input
952 can be provided to the modified trained model 950, and
the modified trained model 950 can produce antibody
sequences 954. The additional sequence input 952 can
include a random or pseudo-random series of number. In
additional implementations, the antibody sequences 954 can
be evaluated to determine whether the antibody sequences
954 have a specified set of characteristics. The evaluation of
the antibody sequences 954 can produce metrics that indi-
cate characteristics of the antibody sequences 954, such as
biophysical properties of an antibody, biophysical properties
of a region of an antibody, and/or the presence or absence of
amino acids located at specified positions of an antibody.

While the illustrative example of FIG. 9 illustrates the
training of a model using multiple training sets in a frame-
work that includes two generative adversarial networks. in
additional implementations, the training of a model using
multiple training datasets can also be represented using a
single generative adversarial network. Further, while the
illustrative example of FIG. 9 illustrates the training of a
model using generative adversarial networks with two train-
ing datasets, in various implementations, more than two
datasets can be used to train models using one or more
generative adversarial networks according to implementa-
tions described herein.

Additionally, although the illustrative example of FIG. 9
shows that the second generative adversarial network 922
uses the trained model 916 having a light chain generating
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component 918 that is separate from a trained heavy chain
generating component 920, in additional implementations,
the trained model 916 used by the second generative adver-
sarial network 922 as the generating component can be a
single generating component that can be used to generate
amino acid sequences that include both light chains and
heavy chains. In these implementations, the second genera-
tive adversarial network 922 can include a single generating
component instead of both a second light chain generating
component 924 and a second heavy chain generating com-
ponent 926 and the second sequence combining component
928 can be absent from the second generative adversarial
network 922. In various implementations, a single generat-
ing component can be implemented by the second genera-
tive adversarial network 922 instead of a separate light chain
generating component and a heavy chain generating com-
ponent in scenarios where interactions between amino acids
of the light chains and the heavy chains introduce one or
more complexities that are more efficiently captured using a
generative adversarial network having a single generating
component. Further, in one or more implementations, addi-
tional layers can be added to the second generative adver-
sarial network 922 to generate amino acid sequences of
antibodies. In various implementations, one or more addi-
tional layers can be added to the second generative adver-
sarial network 922 after, or as part of, the second sequence
combining component 928 to generate the combined
sequences 940.

FIG. 10 is a diagram illustrating a framework 1000 for the
concatenation of amino acid sequences of antibody heavy
chains and light chains, in accordance with some implemen-
tations. The framework 1000 can include a light chain
generating component 1002 that generates data correspond-
ing to a first amino acid sequence 1004 of a light chain of an
antibody. The light chain generating component 1002 can be
part of a generative adversarial network. In addition, the
light chain generating component 1002 can implement one
or more first models to produce data corresponding to amino
acid sequences of antibody light chains. The one or more
first models can include one or more functions having one or
more variables, one or more parameters, one or more
weights, or one or more combinations thereof. The light
chain generating component 1002 can produce the data
corresponding to amino acid sequences of antibody light
chains based on input data obtained by the light chain
generating component 1002. The input data can include
numerical data produced by a random number generator or
a pseudo-random number generator.

The framework 1000 can also include a heavy chain
generating component 1006 that generates data correspond-
ing to a second amino acid sequence 1008 of a heavy chain
of'an antibody. The heavy chain generating component 1006
can be a part of a generative adversarial network. In various
implementations, the heavy chain generating component
1006 can implement one or more second models to produce
data corresponding to amino acid sequences of antibody
heavy chains. The one or more second models can include
one or more additional functions having one or more vari-
ables, one or more parameters, one or more weights, or one
or more combinations thereof. The heavy chain generating
component 1006 can produce the data corresponding to
amino acid sequences of antibody heavy chains based on
additional input data obtained by the heavy chain generating
component 1006. The additional input data can include
numerical data produced by a random number generator or
a pseudo-random number generator.
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Additionally, the framework 1000 can include a concat-
enation component 1010 that combines the first amino acid
sequence 1004 and the second amino acid sequence 1008 to
produce data corresponding to a third amino acid sequence
1012. The concatenation component 1010 can append the
second amino acid sequence 1008 onto the first amino acid
sequence 1004. For example, the first amino acid sequence
1004 can include a first string of letters with each letter in the
first string indicating an amino acid located at a respective
position of a light chain of an antibody. Further, the second
amino acid sequence 1008 can include a second string of
letters with each letter in the second string indicating an
amino acid located at a respective position of a heavy chain
of an antibody. The third amino acid sequence 1012 gener-
ated by the concatenation component 1010 can include a
third string of letters that is produced by adding the second
string of letters included in the second amino acid sequence
1008 after a last letter of the first string of letters included in
the first amino acid sequence 1004. To illustrate, the first
amino acid sequence 1004 terminates in VESG and the
second amino acid sequence 1008 begins with EIQM. The
concatenation component 1010 can combine the first amino
acid sequence 1004 with the second amino acid sequence
1008 by adding the second amino acids sequence 1008
starting with EIQM after the VESG of the first amino acid
sequence 1004. In this way, the third amino acid sequence
1012 includes a number of amino acids that corresponds to
a combination of a first number of amino acids included in
the first amino acid sequence 1004 and a second number of
amino acids included in the second amino acid sequence
1008.

The third amino acid sequence 1012 can be provided to a
challenging component 1014 that can evaluate the third
amino acid sequence 1012 against training data 1016. The
challenging component 1014 can be included in a generative
adversarial network. In illustrative examples, the challeng-
ing component 1014 can be a discriminator of a generative
adversarial network. The training data 1016 can include
amino acid sequences of antibodies. The amino acid
sequences included in the training data 1016 can correspond
to antibodies that are produced by various organisms and
that have been analyzed to determine the amino acid
sequences of the antibodies. In various examples, the train-
ing data 1016 can include at least one of amino acid
sequences of antibody light chains, amino acid sequences of
antibody heavy chains, or amino acid sequences of combi-
nations of antibody light chains with antibody heavy chains.
By evaluating the amino acid sequences generated by the
concatenation component 1010, such as the third amino acid
sequence 1012, in relation to the training data 1016, the
challenging component 1014 can generate classification
output 1018. The classification output 1018 can correspond
to a measure of similarity between the third amino acid
sequence 1012 and the amino acid sequences included in the
training data 1016.

In various examples, the classification output 1018 can be
provided to at least one of the light chain generating com-
ponent 1002 or the heavy chain generating component 1006.
The light chain generating component 1002 and/or the heavy
chain generating component 1006 can utilize the classifica-
tion output 1018 to modify one or more models imple-
mented by the light chain generating component 1002 and/or
the heavy chain generating component 1006. In this way, the
one or more models implemented by the light chain gener-
ating component 1002 and/or the heavy chain generating
component 1006 can be modified to generate amino acid
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sequences of antibody light chains and/or antibody heavy
chains that correspond to the amino acid sequences included
in the training data 1016.

In one or more scenarios, the framework 1000 can include
one or more additional computation layers 1020. The addi-
tional computation layers 1020 can modify output from the
concatenation component 1016 before the output from the
concatenation component 1010 is provided to the challeng-
ing component 1014. In various examples, the additional
computation layers 1020 can be a part of the concatenation
component 1010. The additional computation layers 1020
can be utilized in situations where relationships between
amino acid sequences and one or more biophysical proper-
ties are not accounted for by the concatenation component
1010. Additionally, the one or more additional computation
layers 1020 can be utilized in situations where nonlinear
relationships are present between the heavy chain amino
acid sequences and the light chain amino acid sequences
produced by the light chain generating component 1002 and
the heavy chain generating component 1006. Further, the
one or more additional computation layers 1020 can be
utilized in scenarios where there are various interactions
between the first amino acid sequence 1004 and the second
amino acid sequence 1008 that can be captured by the one
or more additional computation layers 1020.

FIGS. 11-14 illustrate example methods for generating
amino acid sequences of proteins using machine learning
techniques. The example processes are illustrated as collec-
tions of blocks in logical flow graphs, which represent
sequences of operations that can be implemented in hard-
ware, software, or a combination thereof. The blocks are
referenced by numbers. In the context of software, the
blocks represent computer-executable instructions stored on
one or more computer-readable media that, when executed
by one or more processing units (such as hardware micro-
processors), perform the recited operations. Generally, com-
puter-executable instructions include routines, programs,
objects, components, data structures, and the like that per-
form particular functions or implement particular data types.
The order in which the operations are described is not
intended to be construed as a limitation, and any number of
the described blocks can be combined in any order and/or in
parallel to implement the process.

FIG. 11 is a flow diagram illustrating another example
method 1100 for producing protein sequences, in accordance
with some implementations. At 1102, the method 1100
includes obtaining a training dataset that includes amino
acid sequences of proteins. The training dataset can be
obtained by extracting amino acid sequences of proteins
from one or more databases. In various implementations, the
amino acid sequences included in the training dataset can
correspond to proteins that have one or more characteristics.
For example, the amino acid sequences included in the
training dataset can have one or more structural features. In
additional examples, the amino acid sequences included in
the training dataset can have one or more biophysical
properties. In further examples, the amino acid sequences
included in the training dataset can have one or more regions
that include specified amino acid sequences.

At 1104, the method 1100 includes generating encoded
amino acid sequences based on the training dataset. In
various implementations, the encoded amino acid sequences
can be produced by applying a classification system to the
amino acid sequences included in the training dataset. In
examples, the classification system can identify one or more
regions of the amino acid sequences. Additionally, generat-
ing the encoded amino acid sequences can include generat-



US 11,587,645 B2

43

ing a matrix for each amino acid sequence that indicates the
amino acids included at the individual positions of the
individual amino acid sequences.

At 1106, the method 1100 includes generating a model to
produce additional amino acid sequences that correspond to
the amino acid sequences included in the training set. The
model can be generated using the encoded amino acid
sequences produced from the training dataset. In addition, a
generative adversarial network can be used to generate the
model. In various implementations, the model can be used to
produce amino acid sequences of proteins that have one or
more characteristics that are the same as or similar to at least
one characteristic of the proteins corresponding to the amino
acid sequences included in the training dataset.

At 1108, the method 1100 can include generating the
additional amino acid sequences using the model and an
input vector. In examples, the input vector can include a
series of random or pseudo-random numbers. Further, at
1110, the method 1100 can include evaluating the additional
amino acid sequences according to one or more criteria to
determine metrics for the additional amino acid sequences.
The techniques and operations utilized to evaluate the addi-
tional amino acid sequences can be different from those
utilized by the generative adversarial network to generate
the model. In implementations, computer-readable instruc-
tions, such as those associated with a software tool or
software platform, can be executed to evaluate the additional
amino acid sequences. The additional amino acid sequences
can be evaluated to determine whether proteins correspond-
ing to the additional amino acid sequences have one or more
specified characteristics. In particular implementations, the
additional amino acid sequences can be evaluated to deter-
mine a number of variations of the individual additional
amino acid sequences from amino acid sequences of pro-
teins derived from germline genes.

FIG. 12 is a flow diagram illustrating another example
method 1200 for producing antibody sequences, in accor-
dance with some implementations. At 1202, the method
1200 includes obtaining a training dataset including amino
acid sequences of antibodies. The amino acid sequences can
be obtained from one or more databases that store amino
acid sequences of antibodies.

At 1204, the method 1200 includes generating a model to
produce additional amino acid sequences of antibodies that
have one or more characteristics that are similar to charac-
teristics of antibodies of the training dataset. The model can
be produced using a generative adversarial network. In
implementations, the additional amino acid sequences can
correspond to antibodies having one or more specified
structural features. Further, the additional amino acid
sequences can correspond to antibodies having one or more
biophysical features. In still additional examples, the addi-
tional amino acid sequences can correspond to amino acid
sequences of antibodies derived from germline genes.

At 1206, the method 1200 can include generating the
additional amino acid sequences using the model and an
input vector. In various scenarios, the input vector can
include a random or pseudo-random series of numbers
having a specified length. The model can obtain the input
vector and use the input vector to produce output that
corresponds to amino acid sequences of antibodies.

FIG. 13 is a flow diagram illustrating an example method
1300 to produce amino acid sequences of proteins that bind
to a specified target molecule, in accordance with some
implementations. The method 1300 can include, at operation
1302, obtaining first data indicating a composition of a target
molecule. The target molecule can correspond to a protein
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for which proteins that bind to the target molecule are being
generated. The composition of the target molecule can
correspond to an arrangement of atoms that comprise the
target molecule. In various examples, the composition of the
target molecule can include an arrangement of sub-groups of
atoms that comprise the target molecule. For example, the
target molecule can comprise a protein and the composition
of the target molecule can be comprised of a sequence of
amino acids. In illustrative examples, the target molecule
can include an antigen and the method 1300 can be directed
to generating amino acid sequences of antibodies that bind
to the antigen. In additional illustrative examples, the target
molecule can include a substrate and the method 1300 can
be directed to generating amino acid sequences of enzymes
that bind to the substrate.

In addition, at 1304, the method 1300 can include obtain-
ing second data indicating binding interactions between
individual first proteins of a group of first proteins and one
or more additional molecules. The second data can include
data that has been derived experimentally and indicates
binding between the first proteins and the one or more
additional molecules. In various examples, the second data
can be simulated and derived computationally to indicate
binding between the first proteins and the one or more
additional molecules. The binding interactions can include
at least one of a binding affinity or a binding avidity. In
various examples, the binding interactions can indicate a
sequence of amino acids included in a binding region of an
antibody and an additional amino acid sequence of an
epitope region of an antigen, where the binding region has
at least a threshold amount of binding interaction with the
epitope region. Additionally, the binding interactions can
indicate couplings between amino acids included in the
binding region and additional amino acids located in the
epitope region. In illustrative examples, the second data can
include equilibrium constants between individual proteins
and one or more additional molecules. To illustrate, the
second data can include equilibrium dissociation constants
between individual first proteins and the one or more addi-
tional molecules. The second data can indicate that an
individual first protein can bind to a single additional
molecule. The second data can also indicate that an indi-
vidual first protein can bind to multiple additional mol-
ecules. Further, the second data can indicate that multiple
first proteins can bind to a single additional molecule.

In various implementations, the second data can indicate
the portions of the first proteins and the portions of the
additional molecules where the binding takes place. For
example, the second data can indicate the atoms of the first
proteins that participate in binding interactions with atoms
of the additional molecules. In situations where the addi-
tional molecules comprise proteins, the second data can
indicate the amino acids of the first proteins and the amino
acids of the additional molecules that participate in binding
interactions. Further, in additional implementations, the first
proteins can comprise antibodies and the additional mol-
ecules can comprise antigens. In these scenarios, the second
data can indicate the amino acids included in one or more
binding regions of individual first proteins and the amino
acids included in one or more epitope regions of individual
antigens.

The second data can also indicate structural features of the
first proteins and the additional molecules that participate in
binding interactions. To illustrate, the second data can indi-
cate functional groups of the first proteins and functional
groups of additional molecules that participate in binding
interactions. Additionally, in situations where the additional
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molecules include proteins, the second data can indicate at
least one of secondary structures or tertiary structures of the
first proteins and the additional molecules that participate in
binding interactions. In illustrative examples, the second
data can indicate structures that are part of binding interac-
tions, such as sheets, helices, bends, coils, turns, bridges,
loops, or one or more combinations thereof.

Further, at 1306, the method 1300 can include determin-
ing a composition of an additional molecule that has at least
a threshold amount of similarity with respect to at least a
portion of the composition of the target molecule. An
amount of similarity between the target and an additional
molecule can be determined by determining a number of one
or more atoms included in the target molecule and the
additional molecule and comparing the number of atoms.
For example, the number of carbon atoms included in the
target molecule and the number of carbon atoms included in
the additional molecule can be determined can compared
with each other. Continuing with this example, the amount
of difference between the number of carbon atoms included
in the target molecule and the number of carbon atoms in the
additional molecule can correspond to an amount of simi-
larity between the target molecule and the additional mol-
ecule.

Additionally, the amount of similarity between the target
molecule and the additional molecule can be determined by
determining functional groups of the target molecule and the
additional molecule and comparing the number and/or loca-
tion of one or more types of functional groups included in
the target molecule and the additional molecule. In these
situations, an amount of similarity between the target mol-
ecule and the additional molecule can be based on differ-
ences between the number of one or more functional groups
of the additional molecule and the target molecule. For
example, an amount of similarity between the target mol-
ecule and the additional molecule can be based on a differ-
ence between a number of aldehyde groups included in the
target molecule and a number of aldehyde groups included
in the additional molecule. In another example, a number of
aromatic groups included in the target molecule and a
number of aromatic groups included in the additional mol-
ecule can be used to determine an amount of similarity
between the target molecule and the additional molecule.
Differences and/or similarities between locations of func-
tional groups can also be used to determine an amount of
similarity between the target molecule and the additional
molecule. To illustrate, carboxyl groups located at carbon
positions 2 and 10 of the target molecule can be compared
with the locations of carboxyl groups of the additional
molecule. Continuing with this example, an amount of
similarity between the target molecule and the additional
molecule can be based on whether or not the carboxyl
groups of the additional molecule are also located at posi-
tions 2 and 10.

In scenarios where the target molecule and the additional
molecule are proteins, an amount of similarity between the
target molecule and the additional molecule can be deter-
mined by comparing amino acids at individual positions of
the amino acid sequence of the target molecule and the
amino acid sequence of the additional molecule. In imple-
mentations, individual amino acids located at each position
of the amino acid sequence of the target molecule can be
compared with individual amino acids at each position of the
amino acid sequence of the additional molecule. In addi-
tional implementations, individual amino acids located at
positions of one or more regions of the target molecule can
be compared with individual amino acids located at posi-
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tions of one or more regions of the additional molecule that
correspond to the one or more regions of the target molecule.
For example, amino acids located in an epitope region of the
target molecule can be compared with amino acids located
in one or more regions of the additional molecule that can
correspond to the epitope region. The number of positions of
at least a portion of the amino acid sequence of the target
molecule that have amino acids that are the same as at least
a corresponding portion of the amino acid sequence of the
additional molecule can correspond to an amount of identity
between the target molecule and the additional molecule. In
these situations, the amount of similarity between the addi-
tional molecule and the target molecule can correspond to an
amount of identity between the amino acid sequences of one
or more portions of the additional molecule and the target
molecule.

Although the amount of similarity between the target
molecule and the additional molecule have been described
with respect to various examples, the amount of similarity
between the target molecule and the additional molecule can
be determined based on one or more combinations of a
number of criteria. For example, an amount of similarity
between the target molecule and the additional molecule can
be determined by analyzing at least one of a number of one
or more atoms included in the target molecule and the
additional molecule, a number of bonding arrangements
(e.g., single bonds, double bonds, triple bonds) included in
the target molecule and the additional molecule, a number of
one or more functional groups included in the target mol-
ecule and the additional molecule, locations of secondary
structural features of the target molecule and the additional
molecule, amino acids included in secondary structural
features of the target molecule and the additional molecule,
tertiary structure of the target molecule and the additional
molecule, or identity with respect to one or more regions of
the target molecule and the additional molecule.

Threshold amounts of similarity between the additional
molecule and the target molecule can be based on a likeli-
hood that a protein that binds to the target molecule also
binds to the additional molecule. In implementations where
the target molecule and the additional molecule are antigens,
a threshold amount of similarity can correspond to a mini-
mum amount of identity between one or more regions of the
target molecule and one or more regions of the additional
molecule. In illustrative examples, a threshold amount of
similarity between the target molecule and the additional
molecule can correspond to a minimum amount of identity
between an epitope region of the target molecule with
respect to one or more regions of the additional molecule.

At 1308, the method 1300 can include determining a
subset of the group of first proteins that have at least a
threshold amount of binding interaction with the additional
molecule. The threshold amount of binding interaction can
correspond to a maximum value of an equilibrium dissocia-
tion constant. In these situations, determining the subset of
the group of first proteins can include determining an
equilibrium dissociation constant between individual first
proteins and the additional molecule. The equilibrium dis-
sociation constants can then be compared against the thresh-
old equilibrium dissociation constant. In situations where an
equilibrium dissociation constant is less than the threshold
equilibrium dissociation constant, the corresponding first
protein can be added to the subset of the group of first
proteins.

Additionally, at 1310, the method 1300 can include gen-
erating a model using a generative adversarial network to
produce additional amino acid sequences of additional pro-
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teins having at least a threshold amount of binding interac-
tion with the target molecule. The generative adversarial
network can include a generating component that produces
amino acid sequences of antibodies based on an antigen
sequence. The generating component can use an input vector
that includes noise data produced by a random number
generator or a pseudo-random number generator to produce
the amino acid sequences. The amino acid sequences pro-
duced by the generating component can be evaluated by a
challenging component of the generative adversarial net-
work. The challenging component can be a discriminator.
The challenging component can evaluate the amino acid
sequences produced by the generating component with
respect to antibody amino acid sequences that have at least
a threshold amount of binding to antigens that have at least
a threshold amount of similarity with respect to a target
antigen. For example, the challenging component can ana-
lyze the amino acid sequence produced by the generating
component with respect to the amino acid sequences of
subset of the group of first proteins having at least a
threshold amount of binding interaction with the additional
molecule determined at operation 1308. The model can
include one or more functions having one or more variables
with individual variables having respective weights.

The process 1300 can also include, at 1312, generating,
using the model, a plurality of second amino acid sequences
of second proteins that correspond to the target molecule.
For example, the target molecule can include an antigen and
the model can be used to generate amino acid sequences of
antibodies that have at least a threshold probability of having
at least a threshold binding interaction with respect to the
antigen. In illustrative examples, the model can be used to
generate amino acid sequences of antibodies that have at
least a threshold equilibrium dissociation constant in relation
to the antigen.

FIG. 14 is a flow diagram illustrating an example method
1400 to produce amino acid sequences of antibodies by
combining separately generated amino acid sequences of
antibody heavy chains and light chains, in accordance with
some implementations. The method 1400 can include, at
1402, generating, using a generative adversarial network,
first data corresponding to a plurality of first amino acid
sequences related to antibody light chains. The generative
adversarial network can include a first generating compo-
nent that implements a first model to generate the plurality
of first amino acid sequences. The first model can include a
first function having one or more first variables and one or
more first weights. The antibody light chains can include at
least one of variable regions or constant regions of light
chains of antibodies. In addition, the antibody light chains
can include complentarity-determining regions (CDRs) of
light chains of antibodies. The generative adversarial net-
work can use input data to generate the plurality of first
amino acid sequences. The input data can include a numeri-
cal string produced by a random number generator or a
pseudo-random number generator.

At 1404, the method 1400 can include generating, using
the generative adversarial network, a plurality of second
amino acid sequences corresponding to antibody heavy
chains. The generative adversarial network can also include
a second generating component that implements a second
model to generate the plurality of second amino acid
sequences. The second model can include a second function
that is different from the first function. The second function
can include one or more second variables and one or more
second weights. The antibody heavy chains can include at
least one of variable regions or constant regions of heavy

20

25

35

40

45

60

65

48

chains of antibodies. The antibody heavy chains can also
include CDRs of heavy chains of antibodies. The generative
adversarial network can use additional input data to generate
the plurality of second amino acid sequences. The additional
input data can include a numerical string produced by a
random number generator or a pseudo-random number
generator.

At 1406, the method 1400 can include combining, using
the generative adversarial network, a first amino acid
sequence with a second amino acid sequence to produce a
third amino acid sequence of an antibody that includes a
light chain amino acid sequence and a heavy chain amino
acid sequence. The first amino acid sequence can be com-
bined with the second amino acid sequence by concatenating
the second amino acid sequence to the first amino acid
sequence. In one or more examples, the first amino acid
sequence, the second amino acid sequence, and the third
amino acid sequence can be encoded according to a classi-
fication system.

At 1408, the method 1400 can include analyzing, by the
generative adversarial network, the third amino acid
sequence with respect to additional amino acid sequences
included in training data. The third amino acid sequence can
be analyzed by a discriminator and the output can be
provided to at least one of the first generating component or
the second generating component. For example, based on
the output by the discriminator, the first generating compo-
nent can modify the first model used to generate the first
amino acid sequence. In addition, based on the output by the
discriminator, the second generating component can modify
the second model used to generate the second amino acid
sequence. In this way, the output from the discriminator can
be used as feedback by at least one of the first generating
component or the second generating component to generate
amino acid sequences that are more likely to correspond to
the additional amino acid sequences included in the training
data.

The output produced by the discriminator over time can
be indicative of an amount of progress in the training of the
first model and in the training of the second model. After the
training of the first model is complete, a first trained model
can be used to generate amino acid sequences of antibody
light chains and after the training of the second model is
complete, a second trained model can be used to generate
amino acid sequences of antibody heavy chains. The amino
acid sequences produced by the first trained model and the
second trained model can be combined and the combined
amino acid sequences can be analyzed by a software tool.
The software tool can determine one or more metrics with
respect to the combined amino acid sequences. To illustrate,
the one or more metrics can include at least one of a number
of hydrophobic amino acids, a number of positively charged
amino acids, a number of negatively charged amino acids, a
number of uncharged amino acids, a level of expression, a
melting temperature, or a level of self-aggregation.

In addition, the first trained model and the second trained
model can undergo further training using additional training
data that is different from the initial training data used to
produce the first trained model and the second trained
model. For example, the additional training data can include
amino acid sequences of antibodies having one or more
characteristics. To illustrate, the additional training data can
include amino acid sequences of antibodies having nega-
tively charged regions, hydrophobic regions, a relatively low
probability of aggregation, a specified percentage of high
molecular weight (HMW), melting temperature, a threshold
level of expression, or one or more combinations thereof. In
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these implementations, the output from a discriminator of
the generative adversarial network that is based on the
additional training data can be used to further modify the
models implemented by the first generating component and
the second generating component such that the amino acid
sequences produced by the generative adversarial network
can correspond to the amino acid sequences of antibodies
included in the additional training data.

FIG. 15 is an example of a scheme to structurally align
amino acid sequences of antibodies for input to a generative
machine learning architecture, in accordance with some
implementations. The structure of FIG. 15 corresponds to
the application of a classification system to a heavy chain
domain of an antibody. In one or more illustrative examples,
the classification system can allocate 149 positions to
encode the variable region of the heavy chain of an antibody.
Additionally, the classification system used to produce the
structure 1500 in the illustrative example of FIG. 15 can
allocate 123 positions to encode the constant regions of the
heavy chain of the antibody. Further, the classification
system used to produce the structure 1500 in the illustrative
example of FIG. 15 can allocate 123 positions to encode a
hinge region of the heavy chain of the antibody.

Amino acids that are associated with individual positions
of the amino acid sequence may be represented by letters in
the structure 1500. Additionally, positions that are not asso-
ciated with any amino acid may be represented in the
structure 1500. Gaps in the amino acid sequence related to
the structure 1500 can indicate structure of the antibody that
corresponds to the structure shown in FIG. 15.

In the illustrative example of FIG. 15, the structure 1500
can include a first region 1702 from a first position to a
second position that includes amino acids of a first heavy
chain framework region and a second region 1704 from the
second position to the third position that includes amino
acids of a first heavy chain CDR. In addition, the structure
1500 can include a third region 1706 from the third position
to a fourth position that includes amino acids of a second
heavy chain framework region and a fourth region 1708
from the fourth position to a fifth position that includes
amino acids of a second heavy chain CDR. Further, the
structure 1500 can include a fifth region 1710 from the fifth
position to a sixth position that includes amino acids of a
third heavy chain framework region and a sixth region 1712
from the sixth position to a seventh position that includes
amino acids of a third CDR. The structure 1500 can also
include a seventh region 1714 from the seventh position to
an eighth position that includes amino acids of a fourth
heavy chain framework region and an eighth region 1716
from the eighth position to a ninth position that includes
amino acids of a first heavy chain constant region. Addi-
tionally, the structure 1500 may include a ninth region 1718
from the ninth position to a tenth position that includes a
hinge region of the heavy chain of the antibody. In various
examples, the structure 1500 may include a tenth region
1720 from the tenth position to an eleventh position that
includes a second heavy chain constant region and an
eleventh region 1722 from the eleventh position to a twelfth
position that includes amino acids of a third heavy chain
constant region. Each region of the structure may include a
predetermined number of locations and at least a portion of
the locations may be associated with a particular amino acid.

FIG. 16 illustrates a diagrammatic representation of a
machine 1600 in the form of a computer system within
which a set of instructions may be executed for causing the
machine 1600 to perform any one or more of the method-
ologies discussed herein, according to an example, accord-
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ing to an example embodiment. Specifically, FIG. 16 shows
a diagrammatic representation of the machine 1600 in the
example form of a computer system, within which instruc-
tions 1624 (e.g., software, a program, an application, an
applet, an app, or other executable code) for causing the
machine 1600 to perform any one or more of the method-
ologies discussed herein may be executed. For example, the
instructions 1624 may cause the machine 1600 to implement
the frameworks 100, 200, 300, 400, 500, 600, 700, 800
described with respect to FIGS. 1,2, 3,4,5,6,7, 8,9, and
10 respectively, and to execute the methods 1100, 1200,
1300, 1400 described with respect to FIGS. 11, 12, 13, and
14 respectively. Additionally, the encoding shown in FIG. 15
can be generated using the machine 1600 using instructions
1824.

The instructions 1824 transform the general, non-pro-
grammed machine 1600 into a particular machine 1600
programmed to carry out the described and illustrated func-
tions in the manner described. In alternative embodiments,
the machine 1600 operates as a standalone device or may be
coupled (e.g., networked) to other machines. In a networked
deployment, the machine 1600 may operate in the capacity
of a server machine or a client machine in a server-client
network environment, or as a peer machine in a peer-to-peer
(or distributed) network environment. The machine 1600
may comprise, but not be limited to, a server computer, a
client computer, a personal computer (PC), a tablet com-
puter, a laptop computer, a netbook, a set-top box (STB), a
personal digital assistant (PDA), an entertainment media
system, a cellular telephone, a smart phone, a mobile device,
a wearable device (e.g., a smart watch), a smart home device
(e.g., a smart appliance), other smart devices, a web appli-
ance, a network router, a network switch, a network bridge,
or any machine capable of executing the instructions 1624,
sequentially or otherwise, that specify actions to be taken by
the machine 1600. Further, while only a single machine
1600 is illustrated, the term “machine” shall also be taken to
include a collection of machines 1600 that individually or
jointly execute the instructions 1016 to perform any one or
more of the methodologies discussed herein.

Examples of computing device 1600 can include logic,
one or more components, circuits (e.g., modules), or mecha-
nisms. Circuits are tangible entities configured to perform
certain operations. In an example, circuits can be arranged
(e.g., internally or with respect to external entities such as
other circuits) in a specified manner. In an example, one or
more computer systems (e.g., a standalone, client or server
computer system) or one or more hardware processors
(processors) can be configured by software (e.g., instruc-
tions, an application portion, or an application) as a circuit
that operates to perform certain operations as described
herein. In an example, the software can reside (1) on a
non-transitory machine readable medium or (2) in a trans-
mission signal. In an example, the software, when executed
by the underlying hardware of the circuit, causes the circuit
to perform the certain operations.

In an example, a circuit can be implemented mechanically
or electronically. For example, a circuit can comprise dedi-
cated circuitry or logic that is specifically configured to
perform one or more techniques such as discussed above,
such as including a special-purpose processor, a field pro-
grammable gate array (FPGA) or an application-specific
integrated circuit (ASIC). In an example, a circuit can
comprise programmable logic (e.g., circuitry, as encom-
passed within a general-purpose processor or other program-
mable processor) that can be temporarily configured (e.g.,
by software) to perform the certain operations. It will be
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appreciated that the decision to implement a circuit
mechanically (e.g., in dedicated and permanently configured
circuitry), or in temporarily configured circuitry (e.g., con-
figured by software) can be driven by cost and time con-
siderations.

Accordingly, the term “circuit” is understood to encom-
pass a tangible entity, be that an entity that is physically
constructed, permanently configured (e.g., hardwired), or
temporarily (e.g., transitorily) configured (e.g., pro-
grammed) to operate in a specified manner or to perform
specified operations. In an example, given a plurality of
temporarily configured circuits, each of the circuits need not
be configured or instantiated at any one instance in time. For
example, where the circuits comprise a general-purpose
processor configured via software, the general-purpose pro-
cessor can be configured as respective different circuits at
different times. Software can accordingly configure a pro-
cessor, for example, to constitute a particular circuit at one
instance of time and to constitute a different circuit at a
different instance of time.

In an example, circuits can provide information to, and
receive information from, other circuits. In this example, the
circuits can be regarded as being communicatively coupled
to one or more other circuits. Where multiple of such circuits
exist contemporaneously, communications can be achieved
through signal transmission (e.g., over appropriate circuits
and buses) that connect the circuits. In embodiments in
which multiple circuits are configured or instantiated at
different times, communications between such circuits can
be achieved, for example, through the storage and retrieval
of information in memory structures to which the multiple
circuits have access. For example, one circuit can perform
an operation and store the output of that operation in a
memory device to which it is communicatively coupled. A
further circuit can then, at a later time, access the memory
device to retrieve and process the stored output. In an
example, circuits can be configured to initiate or receive
communications with input or output devices and can oper-
ate on a resource (e.g., a collection of information).

The various operations of method examples described
herein can be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by soft-
ware) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors can constitute processor-implemented cir-
cuits that operate to perform one or more operations or
functions. In an example, the circuits referred to herein can
comprise processor-implemented circuits.

Similarly, the methods described herein can be at least
partially processor-implemented. For example, at least some
of the operations of a method can be performed by one or
processors or processor-implemented circuits. The perfor-
mance of certain of the operations can be distributed among
the one or more processors, not only residing within a single
machine, but deployed across a number of machines. In an
example, the processor or processors can be located in a
single location (e.g., within a home environment, an office
environment or as a server farm), while in other examples
the processors can be distributed across a number of loca-
tions.

The one or more processors can also operate to support
performance of the relevant operations in a “cloud comput-
ing” environment or as a “software as a service”

(SaaS). For example, at least some of the operations can
be performed by a group of computers (as examples of
machines including processors), with these operations being
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accessible via a network (e.g., the Internet) and via one or
more appropriate interfaces (e.g., Application Program
Interfaces (APIs).)

Example embodiments (e.g., apparatus, systems, or meth-
ods) can be implemented in digital electronic circuitry, in
computer hardware, in firmware, in software, or in any
combination thereof. Example embodiments can be imple-
mented using a computer program product (e.g., a computer
program, tangibly embodied in an information carrier or in
a machine readable medium, for execution by, or to control
the operation of, data processing apparatus such as a pro-
grammable processor, a computer, or multiple computers).

A computer program can be written in any form of
programming language, including compiled or interpreted
languages, and it can be deployed in any form, including as
a stand-alone program or as a software module, subroutine,
or other unit suitable for use in a computing environment. A
computer program can be deployed to be executed on one
computer or on multiple computers at one site or distributed
across multiple sites and interconnected by a communication
network.

In an example, operations can be performed by one or
more programmable processors executing a computer pro-
gram to perform functions by operating on input data and
generating output. Examples of method operations can also
be performed by, and example apparatus can be imple-
mented as, special purpose logic circuitry (e.g., a field
programmable gate array (FPGA) or an application-specific
integrated circuit (ASIC)).

The computing system can include clients and servers. A
client and server are generally remote from each other and
generally interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In embodiments
deploying a programmable computing system, it will be
appreciated that both hardware and software architectures
require consideration. Specifically, it will be appreciated that
the choice of whether to implement certain functionality in
permanently configured hardware (e.g., an ASIC), in tem-
porarily configured hardware (e.g., a combination of soft-
ware and a programmable processor), or a combination of
permanently and temporarily configured hardware can be a
design choice. Below are set out hardware (e.g., computing
device 1600) and software architectures that can be
deployed in example embodiments.

In an example, the computing device 1600 can operate as
a standalone device or the computing device 1600 can be
connected (e.g., networked) to other machines.

In a networked deployment, the computing device 1600
can operate in the capacity of either a server or a client
machine in server-client network environments. In an
example, computing device 1600 can act as a peer machine
in peer-to-peer (or other distributed) network environments.
The computing device 1600 can be a personal computer
(PC), a tablet PC, a set-top box (STB), a Personal Digital
Assistant (PDA), a mobile telephone, a web appliance, a
network router, switch or bridge, or any machine capable of
executing instructions (sequential or otherwise) specifying
actions to be taken (e.g., performed) by the computing
device 1600. Further, while only a single computing device
1600 is illustrated, the term “computing device” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.
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Example computing device 1600 can include a processor
1602 (e.g., a central processing unit CPU), a graphics
processing unit (GPU) or both), a main memory 1804 and a
static memory 1806, some or all of which can communicate
with each other via a bus 1608. The computing device 1600
can further include a display unit 1610, an alphanumeric
input device 1612 (e.g., a keyboard), and a user interface
(UI) navigation device 1814 (e.g., a mouse). In an example,
the display unit 1610, input device 1612 and UI navigation
device 1814 can be a touch screen display. The computing
device 1600 can additionally include a storage device (e.g.,
drive unit) 1616, a signal generation device 1618 (e.g., a
speaker), a network interface device 1620, and one or more
sensors 1621, such as a global positioning system (GPS)
sensor, compass, accelerometer, or other sensor.

The storage device 1616 can include a machine readable
medium 1622 on which is stored one or more sets of data
structures or instructions 1624 (e.g., software) embodying or
utilized by any one or more of the methodologies or func-
tions described herein. The instructions 1624 can also reside,
completely or at least partially, within the main memory
1604, within static memory 1606, or within the processor
1602 during execution thereof by the computing device
1600. In an example, one or any combination of the pro-
cessor 1602, the main memory 1604, the static memory
1606, or the storage device 1616 can constitute machine
readable media.

While the machine readable medium 1622 is illustrated as
a single medium, the term “machine readable medium” can
include a single medium or multiple media (e.g., a central-
ized or distributed database, and/or associated caches and
servers) that configured to store the one or more instructions
1624. The term “machine readable medium” can also be
taken to include any tangible medium that is capable of
storing, encoding, or carrying instructions for execution by
the machine and that cause the machine to perform any one
or more of the methodologies of the present disclosure or
that is capable of storing, encoding or carrying data struc-
tures utilized by or associated with such instructions. The
term “machine readable medium” can accordingly be taken
to include, but not be limited to, solid-state memories, and
optical and magnetic media. Specific examples of machine-
readable media can include non-volatile memory, including,
by way of example, semiconductor memory devices (e.g.,
Electrically Programmable Read-Only Memory

(EPROM), Electrically Erasable Programmable Read-
Only Memory (EEPROM)) and flash memory devices;
magnetic disks such as internal hard disks and removable
disks; magneto-optical disks; and CD-ROM and DVD-
ROM disks.

The instructions 1624 can further be transmitted or
received over a communications network 1626 using a
transmission medium via the network interface device 1820
utilizing any one of a number of transfer protocols (e.g.,
frame relay, IP, TCP, UDP, HTTP, etc.). Example commu-
nication networks can include a local area network (LAN),
a wide area network (WAN), a packet data network (e.g., the
Internet), mobile telephone networks (e.g., cellular net-
works), Plain Old Telephone (POTS) networks, and wireless
data networks (e.g., IEEE 802.11 standards family known as
Wi-Fi®, IEEE 802.16 standards family known as WiMax®),
peer-to-peer (P2P) networks, among others. The term “trans-
mission medium” shall be taken to include any intangible
medium that is capable of storing, encoding or carrying
instructions for execution by the machine, and includes
digital or analog communications signals or other intangible
medium to facilitate communication of such software.
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Example Implementations

1. A method comprising: obtaining, by a computing
system including one or more computing devices having one
or more processors and memory, first data indicating a first
amino acid sequence of a first antigen; obtaining, by the
computing system, second data indicating binding interac-
tions between individual antibodies of a first plurality of
antibodies and one or more antigens; determining, by the
computing system, a second amino acid sequence of a
second antigen of the one or more antigens that has at least
a threshold amount of identity with respect to at least a
portion of the first amino acid sequence of the first antigen;
determining, by the computing system and based on the
second data, a group of the first plurality of antibodies
included in the second data that have at least a first threshold
amount of binding interaction with the second antigen;
generating, by the computing system and using a generative
adversarial network, a model to produce additional amino
acid sequences of additional antibodies having at least a
threshold probability of having at least a second threshold
amount of binding interaction with the first antigen, wherein
the model is generated based on the first amino acid
sequence of the first antigen and the group of the first
plurality of antibodies; and generating, by the computing
system, and using the model, a second plurality of amino
acid sequences of antibodies that correspond to the first
antigen.

2. The method of 1, wherein the binding interactions
include at least one of a binding affinity or a binding avidity.

3. The method of 1 or 2, wherein: the binding interactions
indicate an amino acid sequence of a binding region of an
antibody of the first plurality of antibodies and an additional
amino acid sequence of an epitope region of an antigen of
the one or more antigens, and the binding region binds to the
epitope region.

4. The method of 3, wherein the binding interactions
indicate couplings between amino acids included in the
binding region and additional amino acids included in the
epitope region.

5. The method of any one of 1-4, wherein the binding
interactions include equilibrium constants between the indi-
vidual antibodies of a first plurality of antibodies and the one
or more antigens.

6. The method of any one of 1-5, further comprising
evaluating, by the computing system and using a software
tool, one or more metrics with respect to the second plurality
of amino acid sequences of antibodies, the one or more
metrics including at least one of a number of hydrophobic
amino acids included in individual amino acid sequences of
the second plurality of amino acid sequences, a number of
positively charged amino acids included in individual amino
acid sequences of the second plurality of amino acid
sequences, a number of negatively charged amino acids
included in individual amino acid sequences of the second
plurality of amino acid sequences, a number of uncharged
amino acids included in individual amino acid sequences of
the second plurality of amino acid sequences, a level of
expression of individual antibodies, a melting temperature
of individual antibodies, or a level of self-aggregation of
individual antibodies.

7. A method comprising: obtaining, by a computing
system including one or more computing devices having one
or more processors and memory, first data indicating a
composition of a target molecule; obtaining, by the com-
puting system, second data indicating binding interactions
between individual first proteins of a plurality of first
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proteins and one or more additional molecules; determining,
by the computing system, a composition of an additional
molecule of the one or more additional molecules that has at
least a threshold amount of similarity with respect to at least
a portion of the composition of the target molecule; deter-
mining, by the computing system and based on the second
data, a group of the plurality of first proteins included in the
second data that have at least a first threshold amount of
binding interaction with the additional molecule; generating,
by the computing system and using a generative adversarial
network, a model to produce additional amino acid
sequences of additional proteins having at least a threshold
probability of having at least a second threshold amount of
binding interaction with the target molecule, wherein the
model is generated based on the composition of the target
molecule and the group of the plurality of first proteins; and
generating, by the computing system, and using the model,
a plurality of second amino acid sequences of second
proteins that correspond to the target molecule.

8. The method of 7, wherein the target molecule includes
a protein.

9. The method of 8, wherein the protein includes an
antigen, the plurality of first proteins include first antibodies,
and the plurality of second proteins include second antibod-
ies.

10. A method comprising: generating, by a computing
system including one or more computing devices having one
or more processors and memory and using a generative
adversarial network, a plurality of first amino acid
sequences, individual first amino acid sequences of the
plurality of first amino acid sequences corresponding to
antibody light chains; generating, by the computing system
and using the generative adversarial network, a plurality of
second amino acid sequences, individual second amino acid
sequences of the plurality of second amino acid sequences
corresponding to antibody heavy chains; combining, by the
computing system and using the generative adversarial
network, a first amino acid sequence of the plurality of first
amino acid sequences with a second amino acid sequence of
the plurality of second amino acid sequences to produce a
third amino acid sequence, the third amino acid sequence
corresponding to an antibody including a light chain corre-
sponding to the first amino acid sequence and a heavy chain
corresponding to the second amino acid sequence; and
analyzing, by the computing system and using the genera-
tive adversarial network, the third amino acid sequence with
respect to an additional plurality of amino acid sequences to
produce an output, the additional plurality of amino acid
sequences being included in training data for the generative
adversarial network and the output indicating a measure of
similarity between the third amino acid sequence and at least
a portion of the additional plurality of amino acid sequences.

11. The method of 10, wherein combining the first amino
acid sequence with the second amino acid sequence includes
concatenating the second amino acid sequence to the first
amino acid sequence.

12. The method of 10 or 11, wherein: the generative
adversarial network includes a first generating component
that implements a first model to generate the plurality of first
amino acid sequences and a second generating component
that implements a second model to generate the plurality of
second amino acid sequences; the first model includes a first
function having one or more first variables and one or more
first weights; and the second model includes a second
function different from the first function, the second function
including one or more second variables and one or more
second weights.
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13. The method of 12, wherein the third amino acid
sequence is analyzed by a discriminator and the output is
provided to at least one of the first generating component or
the second generating component.

14. The method of 13, wherein the first generating com-
ponent modifies the first model based on the output.

15. The method of 13, wherein the second generating
component modifies the second model based on the output.

16. The method of any one of 10-15, wherein the first
amino sequence includes at least a portion of a first variable
region of an antibody light chain and the second amino acid
sequence includes at least a portion of a first variable region
of an antibody heavy chain.

17. The method of any one of 10-16, wherein the first
amino acid sequence includes at least a portion of a first
variable region and a first constant region of an antibody
light chain and the second amino acid sequence includes at
least a portion of a second variable region and a second
constant region of an antibody heavy chain.

18. The method of any one of 10-17, comprising: deter-
mining, by the computing system and based on the output,
that training of the first model is complete such that the first
model is a first trained model; determining, by the comput-
ing system and based on the output, that training of the
second model is complete such that the second model is a
second trained model; generating, by the computing system
and using the first trained model, a first additional amino
acid sequence of an additional light chain of an antibody;
generating, by the computing system and using the second
trained model, a second additional amino acid sequence of
an additional heavy chain of an antibody; and combining, by
the computing system, the first additional amino acid
sequence and the second additional amino acid sequence to
produce a third additional amino acid sequence, the third
additional amino acid sequence including a light chain and
a heavy chain of an additional antibody.

19. The method of 18, comprising evaluating, by the
computing system, the third additional amino acid sequence
with respect to one or more metrics, the one or more metrics
including at least one of a number of hydrophobic amino
acids included in the third additional amino acid sequence,
a number of positively charged amino acids included in the
third additional amino acid sequence, a number of nega-
tively charged amino acids included in the third additional
amino acid sequence, a number of uncharged amino acids
included in the third additional amino acid sequence, a level
of expression of the third additional amino acid sequence, a
melting temperature of the third additional amino acid
sequence, or a level of self-aggregation of the third addi-
tional amino acid sequence.

20. The method of 18, comprising analyzing, by the
computing system and using the generative adversarial
network, the third additional amino acid sequence with
respect to a further plurality of amino acid sequences to
produce an additional output, wherein: the further plurality
of amino acid sequences is included in additional training
data for the generative adversarial network; the additional
training data includes different amino acid sequences of
antibodies than the amino acid sequences included in the
training data; and the additional output indicates an addi-
tional measure of similarity between the third additional
amino acid sequence and at least a portion of the further
plurality of amino acid sequences.

21. A system comprising: one or more hardware proces-
sors; and one or more non-transitory computer readable
media storing computer-executable instructions that, when
executed by the one or more hardware processors, cause the
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one or more processor to perform operations comprising:
obtaining first data indicating a first amino acid sequence of
a first antigen; obtaining second data indicating binding
interactions between individual antibodies of a first plurality
of antibodies and one or more antigens; determining a
second amino acid sequence of a second antigen of the one
or more antigens that has at least a threshold amount of
identity with respect to at least a portion of the first amino
acid sequence of the first antigen; determining, based on the
second data, a group of the first plurality of antibodies
included in the second data that have at least a first threshold
amount of binding interaction with the second antigen;
generating, using a generative adversarial network, a model
to produce additional amino acid sequences of additional
antibodies having at least a threshold probability of having
at least a second threshold amount of binding interaction
with the first antigen, wherein the model is generated based
on the first amino acid sequence of the first antigen and the
group of the first plurality of antibodies; and generating,
using the model, a second plurality of amino acid sequences
of antibodies that correspond to the first antigen.

22. The system of 21, wherein the binding interactions
include at least one of a binding affinity or a binding avidity.

23. The system of 21 or 22, wherein: the binding inter-
actions indicate an amino acid sequence of a binding region
of an antibody of the first plurality of antibodies and an
additional amino acid sequence of an epitope region of an
antigen of the one or more antigens, and the binding region
binds to the epitope region.

24. The system of 23, wherein the binding interactions
indicate couplings between amino acids included in the
binding region and additional amino acids included in the
epitope region.

25. The system of any one of 21-24, wherein the binding
interactions include equilibrium constants between the indi-
vidual antibodies of a first plurality of antibodies and the one
or more antigens.

26. The system of any one of 21-25, wherein the opera-
tions comprise evaluating, using a software tool, one or
more metrics with respect to the second plurality of amino
acid sequences of antibodies, the one or more metrics
including at least one of a number of hydrophobic amino
acids included in individual amino acid sequences of the
second plurality of amino acid sequences, a number of
positively charged amino acids included in individual amino
acid sequences of the second plurality of amino acid
sequences, a number of negatively charged amino acids
included in individual amino acid sequences of the second
plurality of amino acid sequences, a number of uncharged
amino acids included in individual amino acid sequences of
the second plurality of amino acid sequences, a level of
expression of individual antibodies, a melting temperature
of individual antibodies, or a level of self-aggregation of
individual antibodies.

27. A system comprising: one or more hardware proces-
sors; and one or more non-transitory computer readable
media storing computer-executable instructions that, when
executed by the one or more hardware processors, cause the
one or more processor to perform operations comprising:
obtaining first data indicating a composition of a target
molecule; obtaining second data indicating binding interac-
tions between individual first proteins of a plurality of first
proteins and one or more additional molecules; determining
a composition of an additional molecule of the one or more
additional molecules that has at least a threshold amount of
similarity with respect to at least a portion of the composi-
tion of the target molecule; determining, based on the second
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data, a group of the plurality of first proteins included in the
second data that have at least a first threshold amount of
binding interaction with the additional molecule; generating,
using a generative adversarial network, a model to produce
additional amino acid sequences of additional proteins hav-
ing at least a threshold probability of having at least a second
threshold amount of binding interaction with the target
molecule, wherein the model is generated based on the
composition of the target molecule and the group of the
plurality of first proteins; and generating, using the model, a
plurality of second amino acid sequences of second proteins
that correspond to the target molecule.

28. The system of 27, wherein the target molecule
includes a protein.

29. The system of 28, wherein the protein includes an
antigen, the plurality of first proteins include first antibodies,
and the plurality of second proteins include second antibod-
ies.

30. A system comprising: one or more hardware proces-
sors; and one or more non-transitory computer readable
media storing computer-executable instructions that, when
executed by the one or more hardware processors, cause the
one or more processor to perform operations comprising:
generating, using a generative adversarial network, a plu-
rality of first amino acid sequences, individual first amino
acid sequences of the plurality of first amino acid sequences
corresponding to antibody light chains; generating, using the
generative adversarial network, a plurality of second amino
acid sequences, individual second amino acid sequences of
the plurality of second amino acid sequences corresponding
to antibody heavy chains; combining, using the generative
adversarial network, a first amino acid sequence of the
plurality of first amino acid sequences with a second amino
acid sequence of the plurality of second amino acid
sequences to produce a third amino acid sequence, the third
amino acid sequence corresponding to an antibody including
a light chain corresponding to the first amino acid sequence
and a heavy chain corresponding to the second amino acid
sequence; and analyzing, using the generative adversarial
network, the third amino acid sequence with respect to an
additional plurality of amino acid sequences to produce an
output, the additional plurality of amino acid sequences
being included in training data for the generative adversarial
network and the output indicating a measure of similarity
between the third amino acid sequence and at least a portion
of the additional plurality of amino acid sequences.

31. The system of 30, wherein combining the first amino
acid sequence with the second amino acid sequence includes
concatenating the second amino acid sequence to the first
amino acid sequence.

32. The system of 30 or 31, wherein: the generative
adversarial network includes a first generating component
that implements a first model to generate the plurality of first
amino acid sequences and a second generating component
that implements a second model to generate the plurality of
second amino acid sequences; the first model includes a first
function having one or more first variables and one or more
first weights; and the second model includes a second
function different from the first function, the second function
including one or more second variables and one or more
second weights.

33. The system of 32, wherein the third amino acid
sequence is analyzed by a discriminator and the output is
provided to at least one of the first generating component or
the second generating component.

34. The system of 33, wherein the first generating com-
ponent modifies the first model based on the output.



US 11,587,645 B2

59

35. The system of 33, wherein the second generating
component modifies the second model based on the output.

36. The system of any one of 30-35, wherein the first
amino sequence includes at least a portion of a first variable
region of an antibody light chain and the second amino acid
sequence includes at least a portion of a first variable region
of an antibody heavy chain.

37. The system of any one of 30-36, wherein the first
amino acid sequence includes at least a portion of a first
variable region and a first constant region of an antibody
light chain and the second amino acid sequence includes at
least a portion of a second variable region and a second
constant region of an antibody heavy chain.

38. The system of any one of 30-37, wherein the opera-
tions comprise: determining, based on the output, that train-
ing of the first model is complete such that the first model is
a first trained model; determining, based on the output, that
training of the second model is complete such that the
second model is a second trained model; generating, using
the first trained model, a first additional amino acid sequence
of an additional light chain of an antibody; generating, using
the second trained model, a second additional amino acid
sequence of an additional heavy chain of an antibody; and
combining the first additional amino acid sequence and the
second additional amino acid sequence to produce a third
additional amino acid sequence, the third additional amino
acid sequence including a light chain and a heavy chain of
an additional antibody.

39. The system of 38, wherein the operations comprise
evaluating the third additional amino acid sequence with
respect to one or more metrics, the one or more metrics
including at least one of a number of hydrophobic amino
acids included in the third additional amino acid sequence,
a number of positively charged amino acids included in the
third additional amino acid sequence, a number of nega-
tively charged amino acids included in the third additional
amino acid sequence, a number of uncharged amino acids
included in the third additional amino acid sequence, a level
of expression of the third additional amino acid sequence, a
melting temperature of the third additional amino acid
sequence, or a level of self-aggregation of the third addi-
tional amino acid sequence.

40. The system of 38, the operations comprising analyz-
ing, using the generative adversarial network, the third
additional amino acid sequence with respect to a further
plurality of amino acid sequences to produce an additional
output, wherein: the further plurality of amino acid
sequences is included in additional training data for the
generative adversarial network; the additional training data
includes different amino acid sequences of antibodies than
the amino acid sequences included in the training data; and
the additional output indicates an additional measure of
similarity between the third additional amino acid sequence
and at least a portion of the further plurality of amino acid
sequences.

41. A method comprising: obtaining a training dataset
including amino acid sequences of proteins; generating
structured amino acid sequences based on the training
dataset; generating a model to produce additional amino acid
sequences that correspond to the amino acid sequences
included in the training dataset using the structured amino
acid sequences and a generative adversarial network; gen-
erating the additional amino acid sequences using the model
and an input vector; and evaluating the additional amino
acid sequences according to one or more criteria to deter-
mine metrics for the additional amino acid sequences.
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42. The method of 41, further comprising determining a
number of variations of an amino acid sequence included in
the additional amino acid sequences with respect to a protein
derived from a gene of a germline.

43. The method of 41 or 42, wherein the generative
adversarial network includes a Wasserstein generative
adversarial network.

44. The method of any one of 41-43, wherein the struc-
tured amino acid sequences are represented in a matrix that
includes a first number of rows and a second number of
columns, individual rows of the first number of rows cor-
responding to a position of a sequence, and individual
columns of the second number of columns corresponding to
individual amino acids.

45. The method of any one of 41-44, wherein one or more
characteristics of proteins corresponding to the additional
amino acid sequences have at least a threshold similarity to
one or more characteristics of the proteins included in the
training dataset.

46. The method of any one of 41-45, wherein the one or
more characteristics include at least one of structural posi-
tion features, tertiary structure features, or biophysical prop-
erties.

47. The method of any one of 41-46, wherein the proteins
include antibodies, affibodies, affilins, affimers, affitins,
alphabodies, anticalins, avimers, monobodies, designed
ankyrin repeat proteins (DARPins), nanoCLAMP (clostridal
antibody mimetic proteins), antibody fragments, or combi-
nations thereof.

48. A method comprising: obtaining a training dataset
including amino acid sequences of antibodies; generating a
model to produce additional amino acid sequences of anti-
bodies that have one or more characteristics that are similar
to characteristics of the antibodies of the training dataset
using a generative adversarial network; and generating the
additional amino acid sequences using the model and an
input vector.

49. The method of 48, further comprising applying a
classification system to the amino acid sequences of the
training dataset, the classification system indicating a first
number of positions to associate with heavy chain regions of
the antibodies and a second number of positions to associate
with light chain regions of the antibodies.

50. The method of 48 or 49, further comprising: using a
first generative adversarial network and a first training
dataset to generate a first model to produce a plurality of
heavy chain regions of antibodies; using a second generative
adversarial network and a second training dataset to generate
a second model to produce a plurality of light chain regions
of antibodies; and generating antibody sequences by com-
bining at least portions of the plurality of heavy chain
regions and with at least portions of the light chain regions.

51. A method comprising: training a first model of a first
generating component of a generative adversarial network
using a first training dataset including a first number of
amino acid sequences of light chains of antibodies to pro-
duce a first trained model; training a second model of a
second generating component of the generative adversarial
network using a second training dataset including a second
number of amino acid sequences of heavy chains of anti-
bodies to produce a second trained model, wherein training
the second generating component proceeds at a first rate that
is different from a second rate of training the first generating
component; generating, using the first generating compo-
nent, a first additional number of first additional amino acid
sequences corresponding to antibody light chains; generat-
ing, using the second generating component, a second
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additional number of second additional acid sequences cor-
responding to antibody heavy chains; and combining, using
the generative adversarial network, a first amino acid
sequence of the first additional number of first additional
amino acid sequences with a second amino acid sequence of
the second additional number of second additional amino
acid sequences to produce a third amino acid sequence, the
third amino acid sequence corresponding to an antibody
including a light chain corresponding to the first amino acid
sequence and a heavy chain corresponding to the second
amino acid sequence.

52. The method of 51, wherein the second generating
component is trained using a number of hobbled weights to
decrease a rate of training the second generating component
relative to an additional rate of training the second gener-
ating component without the number of hobbled weights.

53. The method of 51 or 52, wherein the second gener-
ating component is trained by slowing a gradient of the
second generating component.

54. The method of any one of 51-53, comprising: training
the second generating component during a first period of
time; determining that a first plurality of amino acid
sequences produced during an end portion of the first period
of time have a first level of quality; training the first
generating component for a second period of time that
includes the first period of time and is longer than the first
period of time; determining that a second plurality of amino
acid sequences produced during an end portion of the second
period of time have the first level of quality; training the
second generating component during a third period of time
that is subsequent to the second period of time; determining
that a third plurality of amino acid sequences produced
during an end portion of the third period of time have a
second level of quality; training the first generating compo-
nent for a fourth period of time that includes the third period
of time and is longer than the third period of time; and
determining that a fourth plurality of amino acid sequences
produced during an end portion of the fourth period of time
has the second level of quality.

55. The method of 54, wherein a total amount of time
elapsed to train the second generating component is less than
a total amount of time elapsed to train the first generating
component.

56. A method comprising: obtaining a training dataset
including amino acid sequences of proteins; generating
structured amino acid sequences based on the training
dataset; generating a model to produce additional amino acid
sequences that correspond to the amino acid sequences
included in the training dataset using the structured amino
acid sequences and a generative adversarial network; gen-
erating the additional amino acid sequences using the model
and an input vector; determining an amount of similarity
between individual additional amino acid sequences and an
amino acid sequence of an antibody produced in relation to
expression of a germline gene; determining a length of
respective complementarity-determining region (CDR) H3
regions of the individual amino acid sequences; and evalu-
ating the additional amino acid sequences based on the
respective amounts of similarity and the respective lengths
of the CDR H3 regions of the additional amino acid
sequences.

57. The method of 56, comprising evaluating the addi-
tional amino acid sequences based on a measure of immu-
nogenicity of the additional amino acid sequences.

58. The method of 57, wherein the measure of immuno-
genicity corresponds to a measure of major histocompat-
ibility complex (MHC) Class 1I binding.
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59. A system comprising: one or more hardware proces-
sors; and one or more non-transitory computer readable
media storing computer-executable instructions that, when
executed by the one or more hardware processors, cause the
one or more processor to perform operations comprising:
training a first model of a first generating component of a
generative adversarial network using a first training dataset
including a first number of amino acid sequences of light
chains of antibodies to produce a first trained model; training
a second model of a second generating component of the
generative adversarial network using a second training data-
set including a second number of amino acid sequences of
heavy chains of antibodies to produce a second trained
model, wherein training the second generating component
proceeds at a first rate that is different from a second rate of
training the first generating component; generating, using
the first generating component, a first additional number of
first additional amino acid sequences corresponding to anti-
body light chains; generating, using the second generating
component, a second additional number of second additional
acid sequences corresponding to antibody heavy chains; and
combining, using the generative adversarial network, a first
amino acid sequence of the first additional number of first
additional amino acid sequences with a second amino acid
sequence of the second additional number of second addi-
tional amino acid sequences to produce a third amino acid
sequence, the third amino acid sequence corresponding to an
antibody including a light chain corresponding to the first
amino acid sequence and a heavy chain corresponding to the
second amino acid sequence.

60. The system of 59, wherein the second generating
component is trained using a number of hobbled weights to
decrease a rate of training the second generating component
relative to an additional rate of training the second gener-
ating component without the number of hobbled weights.

61. The system of 59 or 60, wherein the second generating
component is trained by slowing a gradient of the second
generating component.

62. The system of any one of 59-61, wherein the opera-
tions comprise: training the second generating component
during a first period of time; determining that a first plurality
of amino acid sequences produced during an end portion of
the first period of time have a first level of quality; training
the first generating component for a second period of time
that includes the first period of time and is longer than the
first period of time; determining that a second plurality of
amino acid sequences produced during an end portion of the
second period of time have the first level of quality; training
the second generating component during a third period of
time that is subsequent to the second period of time; deter-
mining that a third plurality of amino acid sequences pro-
duced during an end portion of the third period of time have
a second level of quality; training the first generating com-
ponent for a fourth period of time that includes the third
period of time and is longer than the third period of time; and
determining that a fourth plurality of amino acid sequences
produced during an end portion of the fourth period of time
has the second level of quality.

63. The system of 62, wherein a total amount of time
elapsed to train the second generating component is less than
a total amount of time elapsed to train the first generating
component.

64. A system comprising: one or more hardware proces-
sors; and one or more non-transitory computer readable
media storing computer-executable instructions that, when
executed by the one or more hardware processors, cause the
one or more processor to perform operations comprising:
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obtaining a training dataset including amino acid sequences
of proteins; generating encoded amino acid sequences based
on the training dataset; generating a model to produce
additional amino acid sequences that correspond to the
amino acid sequences included in the training dataset using
the encoded amino acid sequences and a generative adver-
sarial network; generating the additional amino acid
sequences using the model and an input vector; determining
an amount of similarity between individual additional amino
acid sequences and an amino acid sequence of an antibody
produced in relation to expression of a germline gene;
determining a length of respective complementarity-deter-
mining region (CDR) H3 regions of the individual amino
acid sequences; and evaluating the additional amino acid
sequences based on the respective amounts of similarity and
the respective lengths of the CDR H3 regions of the addi-
tional amino acid sequences.

65. The system of 64, wherein the operations comprise
evaluating the additional amino acid sequences based on a
measure of immunogenicity of the additional amino acid
sequences.

66. The system of 65, wherein the measure of immuno-
genicity corresponds to a measure of major histocompat-
ibility complex (MHC) Class 1I binding.

EXAMPLES

We demonstrate the use of a Generative Adversarial
Network (GAN), trained from a set of over 400,000 light and
heavy chain human antibody sequences, to learn the rules of
human antibody formation. The resulting model surpasses
common in silico techniques by capturing residue diversity
throughout the variable region, and is capable of generating
extremely large, diverse libraries of novel antibodies that
mimic somatically hypermutated human repertoire
response. This method permits us to rationally design de
novo humanoid antibody libraries with explicit control over
various properties of our discovery library. Through transfer
learning, we are able to bias the GAN to generate molecules
with key properties of interest such as improved stability and
developability, lower predicted MHC Class II binding, and
specific complementarity-determining region (CDR) char-
acteristics. These approaches also provide a mechanism to
better study the complex relationships between antibody
sequence and molecular behavior, both in vitro and in vivo.
We validate our method by successfully expressing a proof-
of-concept library of nearly 100,000 GAN-generated anti-
bodies via phage display. We present the sequences and
homology-model structures of example generated antibodies
expressed in stable CHO pools and evaluated across mul-
tiple biophysical properties. The creation of discovery librar-
ies using our in silico approach allows for the control of
pharmaceutical properties such that these therapeutic anti-
bodies can provide a more rapid and cost-effective response
to biological threats.

Antibodies are an important class of biologics-based
therapeutics with clear advantages of specificity and effi-
cacy. The high cost and long development times, however,
present key challenges in the accessibility of monoclonal
antibody therapeutics. To quickly respond to known and new
pathogens and disease, and to provide affordable, high
quality treatment to patients around the globe, a molecule
must be designed for activity; but it must also be made
developable and safe for patients. Adding to their overall
cost and process time, many antibodies suffer from poor
yields or require individually customized processing proto-
cols or formulations because their biophysical properties
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cause them to aggregate, unfold, precipitate, or undergo
other physical modification during processing into a drug
product. Even with the significant amounts of research being
put into discovering pharmacologically-active antibodies
and understanding their physical and biological behavior,
they remain challenging to identify for given diseases or
pathogens and to optimize for developability.

Discovery of therapeutic antibodies frequently involves
either display methodologies or B-cells isolated from
humans or animals that have been exposed to an antigen or
a disease target of interest. Although B-cell isolation and
deep sequencing workflows have improved over the years in
regards to cost, labor, and speed, there are still inherent
limitations when considering the process as an antibody
discovery platform. A sufficient immunological response is
required from the specific subjects being used, and due to the
low number and diversity of the subjects being used, there
can be insufficient antibody sequence diversity that is
expressed. There is also the challenge of overcoming B-cell-
driven survival against specific epitopes in which therapeu-
tically viable epitopes are not utilized by an immune
response when they are out-competed by a dominant binding
epitope, leading to an antibody panel focused on a limited
epitope. The library approach can provide a search across a
wider range of sequence space, but most examples of
synthetic libraries result in a sequence profile which is quite
different from those expressed by the human immune sys-
tem. In both cases, there is little to no ability to control the
chemical, biophysical, or biological characteristics of the
identified candidates. As a result, discovered antibodies
frequently have the aforementioned features seriously com-
plicating their developability and stability.

A recent synthetic library approach implements random
mutagenesis in which specific residues are allowed to vary
in type following statistical rules for frequency of appear-
ance by location in the antibody (commonly known as
positional frequency analysis, PFA). PFA and other related
methods do not take into account any interactions between
residues except to the extent that such interactions limit the
expressibility of the protein. While this widely explores the
sequence space, it ignores how residue types interact to form
stabilizing features such as hydrogen or ionic bonds. Ran-
dom assignment is also done without consideration of the
characteristics of the final antibody entity, leading to some
that have unusual and potentially problematic protein sur-
face features.

Another drawback to most synthetic library approaches is
that they focus solely on the complementary-determining
regions (CDRs) of the antibodies. While the CDRs are the
most critical portion of the antibody variable region in
determining binding interactions, many Kabat-defined CDR
positions are part of the core immunoglobulin (Ig) fold, and
many of the framework residues can also play an important
role in direct antigen binding, stability of the molecule, and
CDR orientation.® By limiting mutations to the CDRs,
existing libraries neglect the possibility of improved bioac-
tivity and developability afforded by some framework muta-
tions.

Even with an identified therapeutic antibody, improving
that antibody’s production and purification behavior through
sequence modification can be challenging. While many
papers have been published trying to develop a predictable
connection between an antibody’s sequence and/or com-
puted molecular structure and the molecule’s various physi-
cal characteristics, the connection is elusive as it involves
complex nonlinear interactions between the constituent
amino acid residues. Frequently, such work involves an
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exceptionally small number of molecules, frequently under
200 and often under 50, from a non-diverse set of
sequences—a small number of parental sequences, several
parents with a small number of highly-related sequence
variants, or a single antibody with mutational scanning.
Such approaches give information on an individual antibody
or small group, but are highly unlikely to generalize the
complexity of residue interactions to other antibodies. Such
understanding requires exploration of the wider hyperdi-
mensional space of antibody sequences. Computational
approaches used to optimize molecular behavior also fre-
quently ignore whether the revised molecule remains similar
to human antibodies. That assessment is left to expensive in
vitro studies.

Deep learning offers one route to better capture the
complex relationships between sequence and protein behav-
ior and has been the focus of many recent publications.
Within the context of discovery and libraries, the generative
models such as Generative Adversarial Networks (GANs)
and autoencoder networks (AEs) are of particular interest as
they have been shown to be viable for generating unique
sequences of proteins and nanobodies and antibody CDRs.
But these efforts focus on short sequences of proteins or
portions of antibodies. Use of these approaches in the full
antibody sequence space entails a unique set of challenges
for machine learning models.

Antibodies derive from different germline backgrounds,
are much larger in size, and are composed of multiple
chains, leading to a more complex sequence and structural
space. More complexity in a machine learning setting gen-
erally requires more data to resolve. However, sequence
data, with associated experimental data, is more limited for
antibodies and is far more costly to come by than small
molecules.

Here, we present the Antibody-GAN, a new synthetic
approach to designing a novel class of antibody therapeutics
which we term “humanoid” antibodies. The Antibody-GAN
uses modified Wasserstein-GANs for both single-chain
(light or heavy chain) and paired-chain (light and heavy
chain) antibody sequence generation. These GANs allow us
to encode key properties of interest into our libraries for a
feature-biased discovery platform. Our Antibody-GAN
architecture (1) captures the complexity of the variable
region of the standard human antibody sequence space, (2)
provides a basis for generating novel antibodies that span a
larger sequence diversity than is explored by standard in
silico generative approaches, and (3) provides, through
transfer learning (continued training of a model with a
subset of data with specific desirable characteristics), an
inherent method to bias the physical properties of the
generated antibodies toward improved developability and
chemical and biophysical properties.

We demonstrate the GAN library biasing on such prop-
erties as a reduction of negative surface area patches,
identified as a potential source of aggregation, thermal
instability, and possible half-life reductions, and away from
MHC class II binding, which may reduce the immunoge-
nicity of the generated antibodies. We show, additionally,
library biasing to a higher isoelectric point (pl) to reduce
aggregation and prevent precipitation in therapeutic formu-
lations, and towards longer CDR3 lengths which can
increase diversity and has been known to create more
effective therapeutics for a class of targets.

To demonstrate the viability of the Antibody-GAN to
generate humanoid antibody sequences, the GAN was used
to generate a proof-of-concept validation library of 100k
sequences from 4 germline subgroups. These sequences
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were generated using two single-chain GANs (each trained
on a set of 400,000 heavy or light chain sequences from
human-repertoire antibodies). The GAN sequences were
expressed as antibody antigen binding fragments (Fabs) in
phage. Two of the less-represented germline subgroups were
optimized for germline agreement using transfer learning.
From this initial library, we present the sequences, structure,
and biophysical properties of two antibodies with divergent
surface patch features which were expressed in stable Chi-
nese hamster ovary (CHO) cells.

Generative Adversarial Networks for Antibody Design

The general Antibody-GAN architecture in which a set of
real training variable-region (Fv) antibody sequences are fed
to a discriminator of the GAN along with the output of the
generator. The generator takes a vector of random seeds as
input, and outputs a random synthetic antibody sequence.
During training, the discriminator is progressively trained to
attempt to accurately distinguish between the real and the
synthetic sequences and the generator is progressively
trained to produce synthetic sequences that cannot be dis-
tinguished from the real human repertoire sequences in the
training set. After initial training of the Antibody-GAN from
the entire training set, transfer learning can be used to bias
the GAN towards generating molecules with desired prop-
erties.

As a demonstration of the general architecture and train-
ing approach, an Antibody-GAN was trained using a set of
400,000 human-repertoire sequences, per chain, randomly
selected from the Observed Antibody Space project (OAS).
Prior to training, the sequences were all structurally aligned
using the AHo numbering system which enables direct
comparison of residues at the same structural position across
the dataset. This greatly simplifies the relationships that the
GAN must capture both for generation and discrimination.
Additional training details are provided in the methods
section.

Sequences from the Antibody-GAN (GAN), the OAS
training set, and a set of sequences with 100% germline
framework and PFA-generated CDRs (PFA) were compared
by selecting a random set of 10,000 sequences, all classified
as germline HV3-30, from the training set and all three
synthetic sets. These were evaluated on the distribution of
percent germline agreement of the framework residues.
Within the human repertoire, deviations from framework
germline agreement arise from the sequences having under-
gone somatic hypermutation during B-cell maturation. Mol-
ecules from the Antibody-GAN model (GAN) deviate from
germline much like the OAS. Note that the PFA set uses an
exact germline framework; as such, the germline agreement
is always 100%.

The diversity of the heavy variable (HV) CDR3 was used
as an indicator of the diversity of binding paratopes within
a given set and was assessed using (1) pairwise Levenshtein
distances calculated from only the HV CDR3 residues in all
three sets, and (2) the scores from the first two components
of a principal component analysis (PCA) model on the
aligned HV CDR3 sequences from the OAS, GAN, and PFA
data. The OAS set in general shows the greatest diversity in
HV, however, the GAN and PFA sets have similar diversity
to the main peak in OAS, with the GAN exhibiting slightly
larger diversity than PFA.

The distribution of sequence variability in the OAS
human repertoire set is more similar to those seen in the
GAN set, than the distribution in the PFA set, which diverges
significantly from the other two sets, particularly in the
high-density regions of the plots. The explained variance of
PCA components 1 and 2 are 10% and 4%, respectively.
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While these are only small portions of the overall variance
in the HV CDR3, they do represent the largest covarying
relationships between the HV CDR3 residues and indicate
that the Antibody-GAN approach captures significant rela-
tionships in human repertoire HV CDR3 that the PFA
approach does not. The KL-divergence is a measure of how
different two distributions are from each other, with a value
of 0 indicating identical distributions and values tending
away from O indicating more divergent distributions. The
KL -divergence of the distribution over PC1, the component
that captures most of the variance in CDR3, for the OAS and
GAN sets is 0.57. The KL-divergence of PC1 for the OAS
and PFA sets is 1.45. These distributions for PC1 and PC2
for both the GAN and the PFA sets, relative to OAS can be
determined. The PFA set shows notably more divergence
from the OAS and GAN sets and raises the question of how
well the PFA approach reproduces human paratopes, as well
as the diversity of these paratopes.

Bias and Control of Antibody Discovery Libraries

Our generative, deep-learning approach to humanoid anti-
body library generation not only results in antibody libraries
that are more human-like than existing synthetic library
approaches, but it also allows us to control the features of
our libraries. A subset of these libraries were generated using
a deep-learning technique known as transfer learning, which
biases networks from the general Antibody-GAN-learned
properties towards specific features of interest. The corre-
sponding heatmap shows the difference, in percent of
sequences in a given bin, between each library and OAS.

Biasing on the length of the primary binding paratope,
CDR H3, of an antibody sequence can be determined. We
compare 4 libraries to OAS: the baseline Antibody-GAN
(GAN) from above, Antibody-GANs transfer learned to
small (GAN -C) and to large (GAN +C) CDR H3 lengths,
and the PFA-generated library (PFA) from above. The
baseline Antibody-GAN library shows a total 27% differ-
ence from OAS in its CDR H3 distribution. Though still
significantly different, it more closely reproduces the OAS
distribution over CDR H3 than PFA (38% difference) or the
other two intentionally biased libraries. The GAN —C library
was generated by a model transfer-learned on a small subset
of about 1,000 sequences from the GAN library which had
CDR H3 lengths of less than 12 and resulted in a library with
68% shift to shorter CDR H3 sequences. The GAN +C was
similarly transfer-learned on approximately 1,000 sequences
from the GAN library which had CDR H3 lengths of >22,
creating a very significant 89% bias towards longer CDR H3
sequences. By creating antibodies with longer CDRs, and
therefore more residues to vary, the GAN +C library also
inherently biases towards diversity. Antibodies with long
CDR H3s have also been shown to have better success as
therapeutics for diseases such as human immunodeficiency
virus (HIV),?” and may be useful as a discovery sub-library
for targets that may require such long, exposed paratopes.

Biasing on immunogenicity of the heavy chain using a
major histocompatibility class H (MHCII) binding score
derived from in silico peptide fragment-MHCII binding
affinity predictions can be determined. We use an in-house
machine learning predictor for peptide-MHCII binding simi-
lar in effect to the binding prediction tools provided by the
Immune Epitope DataBase (IEDB). Peptide-MHCII binding
is the first step in the T-cell-mediated immune response and
the clearest handle available for practically mitigating
immunogenicity risk. The GAN library, with only a 2%
difference from OAS in predicted immunogenicity, is sta-
tistically indistinguishable (at p<0.0001) from the human
repertoire training set, whereas PFA shows a statistically
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significant 11% shift towards higher immunogenicity. The
GAN -1 library, using a similar transfer learning approach to
the one described above, shows a total 76% shift to lower
predicted MHCII binding than human repertoire. Reduced
MHCII binding is presumed to reduce the likelihood of
immunogenic response as the binding is a necessary first
step in that response. The resulting biased GAN -I should
generate molecules with lower chance of immunogenic
response. This large bias to sequences of lower immunoge-
nicity is a significant bias towards higher quality antibody
therapeutics, and could result in a library of safer treatments
for patients.

The extent to which this biasing corresponds to lower
immunogenicity will largely depend on the quality of the
model used to choose the transfer samples. As a control
condition, the GAN +1 library shows 49% bias towards
increased MHCII binding. While such a higher-immunoge-
nicity biased model would not usually be of interest in
developing a library, it could provide a means to generate
molecules to help validate the underlying MHCII binding
model, yet again highlighting the utility of a GAN method
as a tool to explore molecular and therapeutic space.

For antibody therapeutics, the isoelectric point (pl, the pH
at which the molecule is neutral) is a key measure of
developability since a pl near the formulation pH may lead
to high viscosity and aggregation or precipitation. A slightly
acidic pH generally results in a higher overall charge leading
to more recent formulations centered around pH 5.5. To
remain stable in solution, therapeutic antibodies would
ideally need to have a pl of greater than 8.5 for the overall
molecule. The GAN library provides a distribution of pI for
the Fv portion of the antibody that is statistically indistin-
guishable from OAS, and the PFA library creates a small
11% bias towards higher Fv pl. We show, with the GAN -P
library, that we can bias the library with a 79% shift to lower
Fv pl via transfer learning. The GAN +P library, however,
shows a 43% increase in sequences with a calculated Fv pl
greater than 9, resulting in likely a significant bias towards
developability.

Large surface patches in antibody therapeutics have been
linked to developability issues such as aggregation, thermal
instability, elevated viscosity, and increased clearance rate,
but also to improvement of specificity, particularly when the
patches are related to charge. As such, biasing a library
towards larger or smaller patches might have beneficial
effects. They also serve as an example of generic biasing
models towards desired structural properties. Biasing on the
maximum negative surface patch area of a molecule, calcu-
lated using structure-based homology modeling can be
determined. Large negative patches have been shown to
increase antibody viscosity at high therapeutic concentra-
tions. Once again, the GAN library is statistically equivalent
to OAS in maximum negative patch size with only a 3%
difference, demonstrating the model’s ability to capture
human repertoire. The PFA library maintains a small but
significant 7% shift to lower negative surface patch area.
The GAN -N library shows that we can intentionally shift
our library towards smaller negative surface patches and
away from known developability issues with a 31% bias, as
shown in GAN -N. The GAN +N library shows that we can
also shift in the other direction with a 36% bias towards
larger negative patches. Structure-based properties like sur-
face patch can be more difficult to bias than sequence-based
ones due to (1) the non-Gaussian distribution of the property
and (2) the added layer of abstraction and complexity away
from sequence. These issues can likely be resolved by
increasing the number of sequences in the transfer learning
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training set by, for example, iteratively training and sam-
pling. For more complex properties, layers can be added to
the model itself during transfer-learning.

Combinatorial Library Design and Expression of Diverse
Germlines

The synthesis of a diverse, de novo antibody discovery
library comprising specific sequences can be costly. Such
specific sequence targeting cannot be done with standard
codon degeneracy approaches. To greatly reduce this cost,
we used a chain-oriented approach to our library design.
combinatorially combining heavy and light chains that are
created with specific amino-acid sequences designed by the
Antibody-GAN rather than designing each Fv individually.
The Antibody-GAN architecture is designed to be modular.
After training with paired-chain Fv sequences, the heavy
chain generator and light chain generator can be separately
used to generate single-chain sequences, such that any
independently generated heavy chain should pair with any
independently generated light chain to create a full Fv which
maintains the library’s intended features. All Antibody-GAN
and transfer-learned Antibody-GAN libraries were gener-
ated from models trained in this manner.

It is also possible to split apart the Antibody-GAN model,
initially, into single chain models. These must be trained on
single chain sequences and may be useful when creating
diverse libraries of varying germlines, when there is no
property of interest associated with the full Fv for which we
want to bias. Because there are few public data sets provid-
ing developability, expression, stability, and other properties
on paired-chain sequences, we choose to synthesize a naive,
unbiased initial discovery library to express in phage. Our
goal for this first library is to reproduce human repertoire. In
doing this, we will also create a data set which can greatly
inform biasing of future libraries. As such, the subsequent
GAN libraries and molecules were generated using the
single chain version of the Antibody-GAN.

For our initial library, we selected heavy chain germlines
IGHV3-30 and IGHV1-2 to pair combinatorially with light
chain germlines IGKV3-20 and IGKV1-39. The number of
training set examples for IGHV1-2 and IGKV1-39 is lower
than for the other two germlines, such that there are not
enough examples to train a model of sufficient quality. The
problem is compounded for other germlines with even fewer
training examples. This can be remedied again by using
transfer learning.

Because the HV3-30 and KV3-20 germlines are well-
represented in the OAS training set, the models generate
sequences of sufficient framework quality. More divergence
from OAS in framework quality for the less-represented
HV1-2 and KV1-39 germlines, respectively, was determined
when generated by a base model without transfer learning.
Only when the model is transfer-learned, allowed to con-
tinue training on only the germline subgroup of interest, is
it then able to generate sequences with framework quality
more closely matching OAS for HV1-2 and KV1-39.

While a full-scale production library might contain
10,000 or more individual single-chain sequences from each
germline combined combinatorially to form billions of mol-
ecules, a proof-of-concept miniature library was created by
selecting 158 sequences from each of these four germlines
and combining them combinatorially to assemble a library
of around 100,000 total sequences.

Fab fragment display levels for our 4 germline-paired
sub-libraries were determined, each containing ~25,000
GAN-generated sequences. Display levels were estimated
by capturing serial dilutions of purified phage on ELISA
plates coated with anti-human Fab and detecting with anti-
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M13 antibodies conjugated to HRP. Average display levels,
normalized for total phage concentration, of IgG Fab from
each of the sub-libraries in polyclonal phage were deter-
mined. A slight bias for higher expression can be seen at
higher concentrations for those germline sub-libraries which
contain the KV1-39 sub-library. Whether or not this differ-
ence is actually significant and related to higher tolerability
of KV1-39 sequences, or represents differential binding of
the anti-human Fab capture antibody used in the ELISA, is
an area of future studies.

To confirm the expressed Fab are indeed the designed, de
novo sequences, we selected and sequenced ~30 colonies
expressed in monoclonal phage from each of the 4 sub-
libraries. Variable-region cladding of the selected sequences
from the two sub-libraries expressing KV3-20 light chain to
the 158 GAN-designed KV3-20 sequences shows primarily
1) our selection of colonies was random and provides good
coverage of the space of designed sequences and 2) only a
small fraction of the expressed sequences contained any
amino acid mutations relative to the GAN-designed
sequences; most matched our synthetic designs exactly.

Similar cladding of the selected sequences from the two
sub-libraries expressing HV3-30 heavy chain was deter-
mined. The same observations can be made with this set.
The selected sequences span the design space well, and
show even fewer amino acid mutations and more exact
matches to the de novo GAN-designed sequences than the
KV3-20 set. Again, expression is shown for the sampled
colonies and it is noted whether those sequences were paired
with the KV3-20 light chain. Phage library sequences that
are not marked as being paired with a light chain from the
KV3-20 library were paired with a light chain sequence
from the KV1-39 library.

A further subset of antibodies were selected from the
HV3-30/KV3-20 sub-library to be expressed in stable CHO
pools for biophysical analysis. The molecule mAb GAN-
1285 was selected for its very large negative surface patch
of “600 A2, shown in red. Molecules with such a large
maximum negative patch are relatively uncommon in the
base Antibody-GAN distribution, but are interesting to
investigate for developability purposes. The molecule mAb
GAN-1528, by contrast, has a maximum negative surface
patch of ~140 A>.

Biophysical Validation of CHO-Expressed GAN Antibod-
ies

For the purpose of validation of our GAN approach and
to interrogate the interesting property of maximum negative
surface patch, we present the biophysical data of mAb
GAN-1285 and mAb GAN-1528 after stable CHO expres-
sion and purification. Four key assays in our platform
include: differential scanning fluorimetry (DSF), self-inter-
action nanoparticle spectroscopy (SINS), polyethylene gly-
col (PEG) solubility, and size-exclusion chromatography
(SEC). These assays are commonly used to assess the
stability and developability of therapeutic antibodies

DSF results for mAb GAN-1285 and mAb GAN-1528, as
well as a platform control antibody, MS-43 were deter-
mined. DSF assesses the temperature at which certain
regions of the antibody begin to unfold. More stable, and
thus more developable antibodies tend to have one or more
regions unfold at higher temperatures and have a higher
first-unfolding transition temperature. The identical constant
regions of these three molecules all show an unfolding event
at around 72° C., presumed to be the IgG CH2 region. The
molecule with a very large negative surface patch, mAb
GAN-1285, shows much lower thermal stability, with an
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initial unfolding event near 60° C. This is consistent with the
notion that negative surface patches are known to be related
to thermal instability.

The SINS assay is commonly used to interrogate whether
a molecule will self interact, leading to issues in the manu-
facturing process as well as possible viscosity and filterabil-
ity issues. Interestingly, the two GAN molecules exhibited
the same SINS profile as the PBS negative control, indicat-
ing a low propensity to self interact, particularly compared
to the positive control molecule, MS-63, known to have high
self-interaction behavior.

The remaining assays, PEG solubility and SEC, show that
both antibodies are reasonably soluble, and display rela-
tively low amounts of high molecular weight (HMW) for-
mation, although there are potentially significant differences
between the two antibodies in both assays.

DISCUSSION

We describe here a new class of de novo human antibod-
ies derived in silico, which we refer to as “humanoid”,
owing to their explicit requirement that generated sequences
must mimic human antibody sequence patterns. While anti-
bodies have excellent antigen specificity and have often
been adapted as scaffolds for therapeutic applications,
B-cells do not undergo selective pressure in vivo to produce
antibodies which have ideal biotherapeutic characteristics.
To reduce the cost of development and greatly increase the
time-to-response for known or new diseases and pathogens,
a discovery library must contain therapeutic antibodies with
desirable features such as: expressibility in a host system,
suitability for common protein manufacturing processes
while achieving high product purity and yield, and exhibit-
ing high stability during long-term storage conditions. In
addition, these therapeutic libraries must also contain anti-
bodies exhibiting in-use characteristics such as low viscosity
for injectability at high concentration, long elimination
half-lives to reduce dosing frequency, and high bioavailabil-
ity for conservation of the injected dose. Here, we have
described an Antibody-GAN approach to the in silico design
of monoclonal antibodies which retain typical human rep-
ertoire characteristics such as diversity and immunogenicity,
while raising the possibility of biasing the libraries in silico
to achieve other desirable biotherapeutic features.

We experimentally validate our in silico approach via
phage Fab-display of an initial library of ~100,000 GAN
sequences and present the biophysical properties of two
example GAN antibodies expressed in CHO. While the
biophysical data of the CHO-expressed molecules are not
sufficient to indicate any causal effect of the structural
differences on the biophysical properties, they show that the
molecules are folding appropriately and that they exhibit
expected biophysical properties. These results show that the
Antibody-GAN is capable of enabling study of large, truly
diverse sets of thousands of full-length secreted antibodies,
and hundreds of millions of antibody Fabs on phage for
biophysical properties. These will provide a real basis to
identify causal effect, or lack thereof, of structural properties
and sequence on biophysical properties—and that data has
the potential to feed in silico predictive models that are truly
generalized across antibodies.

Ongoing research will be needed to determine precisely
which antibody sequence, structure, or biophysical features
will bias antibody libraries for developability, quality, and
efficacy, as there are many nonlinear pathways for antibody
optimization. Existing data sets which interrogate antibody
therapeutic developability consist of, in a few cases, hun-
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dreds of molecules, but more commonly on the order of tens
of antibodies. Deriving from sequence, or even structure,
such complex properties as the viscosity or the chemical or
thermal stability of an antibody will require far more than
hundreds of example molecules. Until now, protein scien-
tists have had to rely on previously-discovered antibodies
and their nearby variants, which provide a very small
random sampling of the true antibody space. The Antibody-
GAN allows us to explore the human antibody space in a
rational way. Using transfer learning to bias GANs for given
properties, either those calculated on structures from homol-
ogy modeling, or measured on physically expressed anti-
bodies, we can now begin to understand such questions as
how engineering for developability affects key properties
like affinity and bio-availability. This provides a mechanism
for in silico and in vitro generation of a much wider range
of sequences with intentional biases forming deep, rich
training sets for human antibody research.

Recent advances in the protein assay space now provide
ultra high-throughput methods in phage or yeast to express
and interrogate, for example, the stability of molecules,®®
and many more will come. We can now rationally design and
create vast experimental antibody data sets for those and
future methods, and begin to understand the properties of a
developable and effective therapeutic drug.

Our Antibody-GAN approach, as a training-set generation
tool, will greatly expand our knowledge of antibody design
and behavior. It will also change the way we create thera-
peutics, by better reproducing properties of in vivo-derived
antibodies with characteristics that can be tuned to make
them better suited as biologics, for production and treatment.
Humanoid discovery libraries generated in this way, will
provide higher quality treatment and a more rapid and
cost-effective response to biological threats and disease
targets.

Methods

Training Set Data Sources

Data for the training sets was derived from the Observed
Antibody Space (OAS) repository. Raw nucleotide
sequences were automatically translated, classified, and
structurally aligned using in-house software (Abacus™).
The AHo structure numbering system was used for structural
alignments of the variable regions.

To create the training sets, variable regions were first
filtered to remove any sequences which were not classified
as human variable regions, by our in-house software Aba-
cus™, and then further cleaned to remove those sequences
which contained stop codons, truncations, or insertions. Any
sequence which had less than 85% agreement to its closest
germline was also removed.

For any paired-chain model, the distinct sequences whose
closest germline belonged to the heavy and light germline
frameworks of interest were then extracted. These two
subsets were randomly sampled and combined during train-
ing to create paired sequences.

For any single-chain model, the initial training set con-
tained all represented germlines. If transfer learning was
necessary, it was done on an extracted set of sequences
whose closest germline belonged to the specific germline of
interest.

Antibody-GAN Development and Training

The Antibody-GAN code was developed in Python. The
Keras and Tensorflow deep-learning libraries were primarily
used to build and train the Antibody-GAN. The Pandas and
Numpy libraries were used to handle any data and training
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set construction. Other public libraries that were used in the
development and analysis of the Antibody-GAN include:
Sklearn, Scipy, and Seaborn.

The architecture of the Antibody-GAN is based on the
Wasserstein-GAN (WGAN) (with gradient penalty) archi-
tecture, and therefore consists of a generator and a discrimi-
nator, which in the WGAN architecture is commonly
referred to as a critic. The single-chain network generator
takes as input a noise vector of size 296. This vector is fed
into a dense layer, followed by 3 up-sampling and 2D
convolutional transpose layers, and a final SoftMax layer to
produce a 2D array of size 148x22. This 2D array corre-
sponds to a one-hot-encoded representation of 148 residues
and 22 possible amino acids (including deletions and Xs) of
a light or heavy chain in an antibody sequence. Antibody
sequences aligned by AHo numbering have 149 residues in
either chain; to make the network structure simpler, we
chose to remove one residue, which appears relatively
constant in human repertoire, from each chain during encod-
ing. When decoding, we add this constant residue back in.
The discriminator, or critic,

takes as input the same 148x22 encoding of an antibody
chain and passes it through two 2D convolutional layers,
followed by a flattening, dense layer and a single-node linear
output.

The paired Antibody-GAN architecture is similar to the
single-chain version, except that there are two generators
with the same architecture (one per chain). The outputs of
each independent-chain generator are concatenated into a
296x22 one-hot-encoded representation of an antibody
sequence with both heavy and light chains. It is possible to
extend the architecture when training or transfer learning to
complex properties that require nonlinear interaction
between the two chains. The paired-GAN critic takes as
input a 296x22 one-hot-encoded representation of a paired-
chain antibody sequence and maintains a similar architecture
to the one described above.

The loss of the generator as well as the discriminator
(critic) on fake (generated) and real (training set examples)
were determined, during training of the single-chain HV3-
30 GAN (using a batch size of 128). Quality was assessed
by germline framework agreement over training epochs for
this model. Training ends when the generated sequences
begin showing sufficient quality.

Human monoclonal antibodies have been shown to have
higher variability in the heavy chain than the light chain.
This may lead to asynchronous optimization of the light
chain generator and the heavy chain generator during train-
ing in the paired

Antibody-GAN, leading to generated heavy chains of
higher quality than the light chain. This can be resolved by
freezing the layers of the heavy chain generator, once it has
reached a state of creating sequences of sufficient quality,
and continuing training on the network until the light chain
generator has reached a desired quality.

PFA Set Creation and OAS Set Selection

The IGHV3-30/IGKV3-20 PFA-based sets used above
were created using the IGHV3-30 and IGKV3-20 training
sets extracted from the OAS, which consisted of ~250,000
and ~150,000 sequences respectively. The 100% germline
framework for IGHV3-30 was used as a constant framework
for all heavy chain PFA sequences, and the 100% IGKV3-20
germline framework was used for all light chains. Each
residue in the CDRs (CDR1, CDR2, and CDR3) were then
generated using positional frequency analysis; sampling
randomly from a distribution representing the frequency of
amino acids in the training set, for any given position.
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10,000 heavy-chain sequences and 10,000 light chain
sequences were created in this manner and then randomly
paired together to create a set of 10,000 sequences with full
variable regions.

The OAS sets from above were created by randomly
downsampling 10,000 sequences from each of the IGHV3-
30 and IGKV3-30 training sets and then pairing together to
create a set of 10,000 sequences with full variable regions.

DR3 PCA

To perform the PCA analysis, the aligned CDR3 of a
given antibody was one-hot encoded into a vector represen-
tation. A 2-component PCA model was built, using the
sklearn library, on those one-hot encoded vectors from all
sequences of the OAS set, the PFA set, and the base GAN
set (totaling 30,000 samples). Heavy chain and light chain
models were built and trained separately.

Antibody-GAN Biasing Sources

CDR H3

Our in-house software, Abacus™, was used to assess the
length of the CDR H3 from any training set, GAN-generated
set, or PFA-generated set.

Calculated Immunogenicity

MHCII is a polymorphic transmembrane protein that
binds and presents fragments of foreign, extracellular pro-
teins to T-cell receptors (TCRs) to initiate an adaptive
immune response. The MHCII binding score is a composite
metric intended to quantify the immunogenicity risk in a
sequence based on whether its constituent peptides are
predicted to bind strongly and promiscuously to MHCII
proteins. The quality of this metric depends on the selection
of an accurate peptide-MHCII binding predictor and a
reasonable method for aggregating predictions across the
peptide fragments in a sequence and across allelic variants
of MHCII.

We developed a machine learning algorithm for peptide-
MHCII binding affinity prediction, trained on the peptide-
MHCII binding affinity data set used to train NetMHClIIpan-
3.2 and reported by Jensen et al. Several machine learning
algorithms have been developed that outperform traditional
matrix-based approaches to peptide-MHCII binding affinity
prediction, including NetMHCII-pan and, more recently,
MARIA .*°** We use our in-house MHCII binding predictor
for ease of integration with our other sequence analysis tools
and based on favorable accuracy comparisons with pub-
lished benchmarks (not shown in the present report). Pre-
dictions from our models are generally correlated with the
“IEDB recommended” algorithm for peptide-MHCII bind-
ing prediction.®®

To calculate a sequence MHCII binding score, we first
break the sequence into each of its constituent 15mer peptide
fragments (sliding window of 15, stride of 1). For each
15mer, we use allele-specific models to predict the binding
affinity to 8 common allelic variants of MHCII (those
encoded by HLA alleles DRB1*0101, DRBI1*0301,
DRB1%0401, DRBI1*0701, DRBI1*0801, DRB1*1101,
DRB1%*1301, and DRB1*¥1501). This set of alleles was also
used in the pioneering MHCII binding risk-reduction work
of de Groot and Martin. We convert the binding affinities
into z-scores for each allele using the mean and standard
deviation of affinities predicted for a large reference set of
15mers randomly selected from the human protein
sequences stored in UniProt.

We take the median z-score across alleles for each 15mer,
and sum the positive median z-scores across the sequence to
get the final MHCII binding score. The median is an
appropriate aggregation because a peptide fragment that
binds several MHCII variants poses an immunogenic risk to
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a larger population of patients than a fragment that binds to
only one. Dhanda et al., creators of the protein deimmuni-
zation engine on the IEDB website, also aggregate MHCII
binding scores across alleles using the median. We ignore
negative scores in our sum across the sequence because
peptides that certainly don’t bind to MHCII (large negative
scores) should not offset peptides that bind MHCII tightly
(large positive score). The fraction of putative MHC binding
peptides for all unique 15mers in each sequence were
determined. The low-immunogenicity set (GAN -I) has
fewer MHCII-binding peptides than other sets, suggesting
the GAN learns which 15mers to avoid regardless of our
sequence-score abstraction.

Structure Modeling, Calculated Isoelectric Point (pI), and
Negative Patch Surface Area Structure models were calcu-
lated as Fab structures using the antibody modeling tool
within the Molecular Operating Environment (MOE,
Chemical Computing Group, Montreal, Canada). Fab struc-
tures were used rather than Fvs in order to generate more
accurate Fv surface patches in the presence of constant
domains. The pls were calculated using the Ensemble Iso-
electric Point method in the Protein Properties tool within
MOE called as an SVL method. The electronegative patch
sizes were calculated using the Protein Patches method as an
SVL call within MOE with the Hydrophobic Min Area
(p_hminarea) changed from the default setting of 50 to 30
A? and the Charge Cutoff (p_qgcutoff) changed from the
default setting of 40 to 20 A2

GAN-Library Sequence Selection

Human repertoire contains a small subset of sequences
which have missing residues, non-standard cystines, non-
standard N-linked glycosylation sites, or potential N-linked
glycosylation sites. Sequences with these properties were
not pulled from the training set and are therefore also
represented by a small subset in the GAN libraries. For our
phage library, we filtered out any sequences generated by the
GAN which had any of these properties, before selecting
final sequences.

Phage Expression of GAN-Library

Bacterial Strains

Escherichia coli One Shot™ TOP10 cells (F-mcrA A(mrr-
hsdRMS-merBC) ®80lacZAM15 A lacX74 recAl araD139
A(araleu)7697 galU galK rpsL. (StrR) endAl nupG) were
purchased from Thermo Fisher Scientific and used for
phagemid DNA cloning. E. Cloni® 10G electrocompetent
cells (F-mcrA A(mrr-hsdRMS-mcrBC) endAl recAl
®80dlacZAM15 AlacX74 araD139 A(ara,leu)7697galU
galK rpsl. nupG A- tonA (StrR)) were purchased from
Lucigen Corporation and were also used for phagemid DNA
cloning. E. coli SS520 electrocompetent cells (F'[proAB
lacl?Z AM15 Tn10 (Tet™)] araD139 A(ara-leu)7696 galE15
galK16 A(lac)X74 rpsL (Str®) hsdR2 (rg—mg+) mcrA
merB1) were purchased from Lucigen Corporation and used
as the host for phage library production.

Cloning

The phagemid pADL-20c (Antibody Design Labs) was
used for construction of the GAN sub-libraries and was
modified for expression of Fab antibody fragments as N-ter-
minal plII fusion proteins in E. coli. This vector utilizes the
bacterial pectate lysate (pelB) signal sequences for periplas-
mic translocation of fusion proteins, along with an ampicil-
lin resistance gene for growth and selection in transformed
E. coli. A hexahistidine tag and a FLAG tag was added to the
C-terminus of the CH1 and kappa constant domains, respec-
tively, and the amber stop codon upstream of gIIl was
removed to allow expression of the fusion protein in SS520
host cells.
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Synthetic gene fragments encoding variable heavy and
light chains were first amplified individually using PCR
primers containing 22 base pairs of sequence complemen-
tary to the phagemid backbone. Next, PCRs were pooled by
germline and assembled sequentially into the phagemid
using NEBuilder® HiFi DNA Assembly Master Mix (New
England Biolabs). Transformations were performed using
One Shot™ TOP10 or E. cloni 10G® cells, and the resulting
phagemid DNA was purified using ZymoPURE™ II Plas-
mid Midiprep Kit (Zymo Research).

Phage Library Production

E. coli SS520 host cells were electroporated as described
by the manufacturer using 250 ng of each sub-library DNA.
An aliquot of each transformation was plated on 2xYT agar
plates supplemented with 100 pg/mL carbenicillin and 2%
glucose and incubated overnight at 30° C. The resulting
colonies were used for estimating library size and for
sequencing the variable heavy and light chains using colony
PCR. The remainder of the transformation was used to
inoculate 2xYT-CG (2xYT broth containing 50 pg/mlL. car-
benicillin and 2% glucose) at an OD, ,,,, of 0.07 and
incubated with shaking at 250 rpm and 37° C. until an
OD¢oo ,im~0.5. The cultures were then infected with
M13KO7 helper phage (Antibody Design Labs) at a multi-
plicity of infection (MOI) of 25 and incubated at 37° C.
without shaking for 30 minutes, followed by shaking at 200
rpm for 30 minutes. Cultures were centrifuged followed by
medium replacement in 2xYT-CK (2xYT supplemented
with 50 pg/ml carbenicillin and 25 pg/ml kanamycin).
After overnight incubation at 30° C. and 200 rpm, the phage
particles were purified and concentrated by PEG/NaCl pre-
cipitation and resuspended in PBS containing 0.5% BSA and
0.05% Tween-20. Phage concentration was determined
using a spectrophotometer, assuming 1 unit at OD is equiva-
lent to 5x10'2 phage/mL. PEG-precipitated phage from each
GAN sub-library was normalized to 1x10"* phage/mI. and
serially diluted 10-fold in 2% non-fat dry milk in PBS, in
duplicate, for use in the polyclonal phage ELISA.

Monoclonal Phage Production

Single clones harboring a functional Fab fusion protein
were inoculated into 500 pL 2xYT-CTG (2xYT broth
supplemented with 50 pg/mL carbenicillin, 15 pg/mlL tetra-
cycline, and 2% glucose) and cultivated in 96 deep-well
plates overnight at 37° C. with rigorous shaking. 5 puLL of the
overnight cultures was then transferred to new deep-well
plates containing 100 pL. 2xYT-CTG and incubated at 37° C.
with rigorous shaking until an ODgy, ,,,,~0.5. M13KO7
helper phage was added to each well at MO125, and plates
were incubated without agitation at 37° C. for 1 hour before
medium replacement to 2xYT-CK and overnight incubation
with rigorous shaking at 30° C. Phage supernatants were
harvested after centrifugation and diluted 1:1 in 2% non-fat
dry milk in PBS for use in the monoclonal phage ELISA.

Phage ELISA

The amount of Fab displayed on phage was determined
using ELISA. Briefly, 96-well MaxiSorp® assay plates
(Nunc) were coated overnight at 4° C. with anti-human Fab
(Millipore Sigma) diluted 1:500 in PBS, then blocked in
PBS containing 1% BSA for 1 hour at room temperature
(RT). Diluted phage preparations were added and allowed to
incubate for 1 hour at RT before captured virions were
detected using a 1:5000 dilution of anti-M13-HRP (Santa
Cruz Biotechnology) for 1 hour at RT. All interval plate
washes were performed 3 times in PBST (PBS supple-
mented with 0.1% v/v Tween-20). ELISAs were developed
by addition of TMB solution (Thermo Fisher Scientific) and
quenched using 10% phosphoric acid. Absorbance was read



US 11,587,645 B2

77

at A, .- Phage supernatant from non-transformed E. coli
SS520 host cells was included as a negative control.

Selected CHO-Expressed Molecules

CHOK1 Glutamine Synthetase (GS) knockout host cells
(Horizon Discovery, Cambridge, United Kingdom) were
maintained in CD OptiCHO (Thermo Fisher Scientific,
Waltham, Mass.) containing 4 mM glutamine. Cells were
cultured as previously described.”

The light chains (LC) and heavy chains (HC) containing
appropriate signal peptides were cloned into an in-house
proprietary bicistronic PiggyBac transposon expression vec-
tor”® in a sequential, 2-step manner using Gibson assembly.
Successful insertion of the intended coding sequences was
confirmed by Sanger DNA sequencing. Plasmid DNA was
purified using a conventional silica-based low endotoxin
Zymo Research kit (Irvine, Calif.).

Cells, DNA and RNA were added to BTX 25—multi-well
electroporation plates (Harvard Bioscience, Holliston,
Mass.) using a Tecan Freedom EVO (Mannedorf, Switzer-
land) liquid handler. For each transfection, 2.4E6 cells were
spun down and resuspended in 150 uL of PFCHO medium
(Sigma-Aldrich, St. Louis, Mo.). 7.5 ug of DNA and 2.5 ug
of pJVI95 transposase RNA were added to the cells, then
electroporated at 3175 uF capacitance, 290 V voltage, 950 Q
resistance in an ECM 830 electro manipulator coupled to a
HT 100 high throughput adaptor (BTX, Holliston, Mass.).
Both molecules were transfected in triplicate. Cells were
transferred to 2 mLs of non-selective medium in a 24 deep
well plate (DWP) shaking at 220 rpm at standard growth
conditions and cultured for 2 days prior to selection. After
two days, cells were counted on a guava flow cytometer
(Luminex, Austin, Tex.); plates were spun down and resus-
pended in 2 mLs of selective CD OptiCHO medium. Cells
were counted and passaged every four to five days thereafter.

Thirteen days after selection started and viability was
>90%, cells were seeded into proprietary production
medium at 8x105 ¢/mL in 3 mLs in 24 DWPs under standard
growth conditions. On days 3, 6 and 8, cells were fed with
5% of the starting volume with Cell Boost7a and 0.5% Cell
Boost7b (Hyclone GE Healthcare Life Sciences). Cell
counts and glucose was measured as previously described,”®
On day 8, 50% glucose was supplemented to a final con-
centration of approximately 10 g/L.. On day 10, cells were
counted, spun down and filtered by centrifugation onto
24-deep well filter plates (Thomson, Oceanside, Calif.).
Titer was sampled by Ultra High-Performance Liquid Chro-
matography (UHPLC) Protein A affinity. Replicate wells
were pooled together for Protein A purification.

Biophysical Validation of CHO-Expressed Molecules

Sample Preparation

Samples were buffer exchanged against 10 diavolumes of
20 mM sodium chloride, 150 mM sodium chloride, pH 7.1
(PBS) using a centrifugal filter with a 30 kDa molecular
weight cut off (Amicon). After buffer exchange, samples
were normalized to 1 mg/mL using a Lunatic protein con-
centration plate format instrument (Unchained Labs).

Differential Scanning Fluorimetry

Thermal transition temperature(s) and weighted shoulder
scores were determined by DSF according to the method
previously described (Kerwin, 2019).

Self Interaction Nanoparticle Spectroscopy

SINS measurements were performed according to the
method previously described (Liu, 2013) Briefly, gold nan-
oparticles (Ted Pella) were conjugated overnight with an
80:20 ratio of anti-human and anti-goat antibodies (Jackson
Immuno Research). Unreacted sites were blocked using an
aqueous 0.1% (w/v) polysorbate 20 solution. Conjugated
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gold nanoparticles were then concentrated by centrifugation
and removal of 95% of the supernatant. Analysis was carried
out in PBS (20 mM phosphate, 150 mM NaCl, pH 7.1) ata
protein concentration of 0.05 mg/ml reacted with 5 ul of
concentrated conjugated gold nanoparticles. After a 2 hour
incubation, absorbance spectrum from 400-600 nm was
collected using a Spectrostar Nano plate reader at 2 nm
steps. The wavelength maximum of the spectrum peak is
reported.

Relative Solubility

Solubility was assessed according to the method previ-
ously described (Kerwin, 2019). Analysis was done in PBS
buffer (20 mM sodium phosphate and 150 mM sodium
chloride pH 7.1) and a final PEG 10,000 concentration
ranging from 0% to 12%. Remaining soluble protein after
PEG incubation is reported.

Size Exclusion High Performance Liquid Chromatogra-
phy

Size exclusion high performance liquid chromatography
(SEC) was performed on a Dionex UltiMate 3000 HPLC
System using a Waters XBridge Protein BEH SEC 200 A,
3.5 um column and a diode array detector collecting at 280
nm. Separation was achieved under native conditions with a
100 mM sodium phosphate, 250 mM sodium chloride, 10%
acetonitrile v/v mobile-phase buffer at pH 6.8.

What is claimed is:
1. A method comprising:
generating, by a computing system including one or more
computing devices having one or more processors and
memory and using a generative adversarial network, a
plurality of first amino acid sequences, individual first
amino acid sequences of the plurality of first amino
acid sequences corresponding to antibody light chains;

generating, by the computing system and using the gen-
erative adversarial network, a plurality of second amino
acid sequences, individual second amino acid
sequences of the plurality of second amino acid
sequences corresponding to antibody heavy chains;

combining, by the computing system and using the gen-
erative adversarial network, a first amino acid sequence
of the plurality of first amino acid sequences with a
second amino acid sequence of the plurality of second
amino acid sequences to produce a third amino acid
sequence, the third amino acid sequence corresponding
to an antibody including a light chain corresponding to
the first amino acid sequence and a heavy chain cor-
responding to the second amino acid sequence; and

analyzing, by the computing system and using the gen-
erative adversarial network, the third amino acid
sequence with respect to an additional plurality of
amino acid sequences to produce an output, the addi-
tional plurality of amino acid sequences being included
in training data for the generative adversarial network
and the output indicating a measure of similarity
between the third amino acid sequence and at least a
portion of the additional plurality of amino acid
sequences.

2. The method of claim 1, wherein combining the first
amino acid sequence with the second amino acid sequence
includes concatenating the second amino acid sequence to
the first amino acid sequence.

3. The method of claim 1, wherein:

the generative adversarial network includes a first gener-

ating component that implements a first model to
generate the plurality of first amino acid sequences and
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a second generating component that implements a
second model to generate the plurality of second amino
acid sequences;

the first model includes a first function having one or more

first variables and one or more first weights; and

the second model includes a second function different

from the first function, the second function including
one or more second variables and one or more second
weights.

4. The method of claim 3, wherein the third amino acid
sequence is analyzed by a discriminator and the output is
provided to at least one of the first generating component or
the second generating component.

5. The method of claim 4, wherein the first generating
component modifies the first model based on the output.

6. The method of claim 4, wherein the second generating
component modifies the second model based on the output.

7. The method of claim 1, wherein the first amino acid
sequence includes at least a portion of a first variable region
of an antibody light chain and the second amino acid
sequence includes at least a portion of a first variable region
of an antibody heavy chain.

8. The method of claim 1, wherein the first amino acid
sequence includes at least a portion of a first variable region
and a first constant region of an antibody light chain and the
second amino acid sequence includes at least a portion of a
second variable region and a second constant region of an
antibody heavy chain.

9. The method of claim 3, comprising:

determining, by the computing system and based on the

output, that training of the first model is complete such

that the first model is a first trained model;

determining, by the computing system and based on the
output, that training of the second model is complete
such that the second model is a second trained
model;

generating, by the computing system and using the first
trained model, a first additional amino acid sequence
of an additional light chain of an antibody;

generating, by the computing system and using the
second trained model, a second additional amino
acid sequence of an additional heavy chain of an
antibody; and

combining, by the computing system, the first addi-
tional amino acid sequence and the second additional
amino acid sequence to produce a third additional
amino acid sequence, the third additional amino acid
sequence including a light chain and a heavy chain of
an additional antibody.

10. The method of claim 9, comprising evaluating, by the
computing system, the third additional amino acid sequence
with respect to one or more metrics, the one or more metrics
including at least one of a number of hydrophobic amino
acids included in the third additional amino acid sequence,
a number of positively charged amino acids included in the
third additional amino acid sequence, a number of nega-
tively charged amino acids included in the third additional
amino acid sequence, a number of uncharged amino acids
included in the third additional amino acid sequence, a level
of expression of the third additional amino acid sequence, a
melting temperature of the third additional amino acid
sequence, or a level of self-aggregation of the third addi-
tional amino acid sequence.

11. The method of claim 9, comprising analyzing, by the
computing system and using the generative adversarial
network, the third additional amino acid sequence with
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respect to a further plurality of amino acid sequences to
produce an additional output, wherein:

the further plurality of amino acid sequences is included

in additional training data for the generative adversarial
network;
the additional training data includes different amino acid
sequences of antibodies than the additional plurality of
amino acid sequences included in the training data; and

the additional output indicates an additional measure of
similarity between the third additional amino acid
sequence and at least a portion of the further plurality
of amino acid sequences.

12. A system comprising:

one or more hardware processors; and

one or more non-transitory computer readable media

storing computer-executable instructions that, when
executed by the one or more hardware processors,
cause the one or more processor to perform operations
comprising:

training a first model of a first generating component of a

generative adversarial network using a first training
dataset including a first number of amino acid
sequences of light chains of antibodies to produce a
first trained model,;

training a second model of a second generating compo-

nent of the generative adversarial network using a
second training dataset including a second number of
amino acid sequences of heavy chains of antibodies to
produce a second trained model, wherein training the
second generating component proceeds at a first rate
that is different from a second rate of training the first
generating component;

generating, using the first generating component, a first

additional number of first additional amino acid
sequences corresponding to antibody light chains;

generating, using the second generating component, a

second additional number of second additional acid
sequences corresponding to antibody heavy chains; and

combining, using the generative adversarial network, a

first amino acid sequence of the first additional number
of first additional amino acid sequences with a second
amino acid sequence of the second additional number
of second additional amino acid sequences to produce
a third amino acid sequence, the third amino acid
sequence corresponding to an antibody including a
light chain corresponding to the first amino acid
sequence and a heavy chain corresponding to the
second amino acid sequence.

13. The system of claim 12, wherein the second generat-
ing component is trained using a number of hobbled weights
to decrease a rate of training the second generating compo-
nent relative to an additional rate of training the second
generating component without the number of hobbled
weights.

14. The system of claim 12, wherein the second generat-
ing component is trained by slowing a gradient of the second
generating component.

15. The system of any one of claim 12 wherein the one or
more non-transitory computer readable media store addi-
tional computer-executable instructions that, when executed
by the one or more hardware processors, cause the one or
more processors to perform additional operations compris-
ing:

training the second generating component during a first

period of time;
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determining that a first plurality of amino acid sequences
produced during an end portion of the first period of
time have a first level of quality;

training the first generating component for a second

period of time that includes the first period of time and 5
is longer than the first period of time;

determining that a second plurality of amino acid

sequences produced during an end portion of the sec-
ond period of time have the first level of quality;

training the second generating component during a third 10

period of time that is subsequent to the second period
of time;

determining that a third plurality of amino acid sequences

produced during an end portion of the third period of

time have a second level of quality; 15
training the first generating component for a fourth period

of time that includes the third period of time and is

longer than the third period of time; and

determining that a fourth plurality of amino acid

sequences produced during an end portion of the fourth 20
period of time has the second level of quality.

16. The system of claim 15, wherein a total amount of
time elapsed to train the second generating component is
less than a total amount of time elapsed to train the first
generating component. 25
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